当前位置:主页 > 软件编程 > .NET代码 >

C#通过KD树进行距离最近点的查找

时间:2020-11-17 00:49:54 | 栏目:.NET代码 | 点击:

本文首先介绍Kd-Tree的构造方法,然后介绍Kd-Tree的搜索流程及代码实现,最后给出本人利用C#语言实现的二维KD树代码。这也是我自己动手实现的第一个树形的数据结构。理解上难免会有偏差,敬请各位多多斧正。

1. KD树介绍

Kd-Tree(KD树),即K-dimensional tree,是一种高维索引树形数据结构,常用于在大规模的高维数据空间进行最邻近查找和近似最邻近查找。我实现的KD树是二维的Kd - tree。目的是在点集中寻找最近点。参考资料是Kd-Tree的百度百科。并且根据百度百科的逻辑组织了代码。

2. KD树的数学解释

3. KD树的构造方法

这里是用的二维点集进行构造Kd-tree。三维的与此类似。
树中每个节点的数据类型:

public class KDTreeNode
  {
    /// <summary>
    /// 分裂点
    /// </summary>
    public Point DivisionPoint { get; set; }

    /// <summary>
    /// 分裂类型
    /// </summary>
    public EnumDivisionType DivisionType { get; set; }

    /// <summary>
    /// 左子节点
    /// </summary>
    public KDTreeNode LeftChild { get; set; }

    /// <summary>
    /// 右子节点
    /// </summary>
    public KDTreeNode RightChild { get; set; }
  }


3.1 KD树构造逻辑流程

3.2 代码实现

private KDTreeNode CreateTreeNode(List<Point> pointList)
{
  if (pointList.Count > 0)
  {
    // 计算方差
    double xObtainVariance = ObtainVariance(CreateXList(pointList));
    double yObtainVariance = ObtainVariance(CreateYList(pointList));

    // 根据方差确定分裂维度
    EnumDivisionType divisionType = SortListByXOrYVariances(xObtainVariance,    yObtainVariance, ref pointList);

    // 获得中位数
    Point medianPoint = ObtainMedian(pointList);
    int medianIndex = pointList.Count / 2;

    // 构建节点
    KDTreeNode treeNode = new KDTreeNode()
    {
      DivisionPoint = medianPoint,
      DivisionType = divisionType,
      LeftChild = CreateTreeNode(pointList.Take(medianIndex).ToList()),
      RightChild = CreateTreeNode(pointList.Skip(medianIndex + 1).ToList())
    };
    return treeNode;
  }
  else
  {
    return null;
  }
}


4. KD树搜索方法

Kd-Tree的总体搜索流程先根据普通的查找找到一个最近的叶子节点。但是这个叶子节点不一定是最近的点。再进行回溯的操作找到最近点。

4.1 KD树搜索逻辑流程

4.2 代码实现

public Point FindNearest(Point searchPoint)
{
  // 按照查找方式寻找最近点
  Point nearestPoint = DFSSearch(this.rootNode, searchPoint);
  
  // 进行回溯
  return BacktrcakSearch(searchPoint, nearestPoint);
}


private Point DFSSearch(KDTreeNode node,Point searchPoint,bool pushStack = true)
{
  if(pushStack == true)
  {
    // 利用堆栈记录查询的路径,由于树节点中没有记载父节点的原因
    backtrackStack.Push(node);
  }
  if (node.DivisionType == EnumDivisionType.X)
  {
    return DFSXsearch(node,searchPoint);
  }
  else
  {
    return DFSYsearch(node, searchPoint);
  }
}

private Point BacktrcakSearch(Point searchPoint,Point nearestPoint)
{
  // 如果记录路径的堆栈为空则表示已经回溯到根节点,则查到的最近点就是真正的最近点
  if (backtrackStack.IsEmpty())
  {
    return nearestPoint;
  }
  else
  {
    KDTreeNode trackNode = backtrackStack.Pop();
    
    // 分别求回溯点与最近点距查找点的距离
    double backtrackDistance = ObtainDistanFromTwoPoint(searchPoint,     trackNode.DivisionPoint);
    double nearestPointDistance = ObtainDistanFromTwoPoint(searchPoint, nearestPoint);
    
    if (backtrackDistance < nearestPointDistance)
    {
      // 深拷贝节点的目的是为了避免损坏树
      KDTreeNode searchNode = new KDTreeNode()
      {
        DivisionPoint = trackNode.DivisionPoint,
        DivisionType = trackNode.DivisionType,
        LeftChild = trackNode.LeftChild,
        RightChild = trackNode.RightChild
      };
      nearestPoint = DFSBackTrackingSearch(searchNode, searchPoint);
   }
   // 递归到根节点
   return BacktrcakSearch(searchPoint, nearestPoint);
  }
}


5. 源码交流

https://github.com/CreamMilk/C-Kd-Tree

您可能感兴趣的文章:

相关文章