时间:2023-02-20 09:46:06 | 栏目:JAVA代码 | 点击:次
在[高并发Java 一] 前言中已经提到了无锁的概念,由于在jdk源码中有大量的无锁应用,所以在这里介绍下无锁。
1 无锁类的原理详解
1.1 CAS
CAS算法的过程是这样:它包含3个参数CAS(V,E,N)。V表示要更新的变量,E表示预期值,N表示新值。仅当V
值等于E值时,才会将V的值设为N,如果V值和E值不同,则说明已经有其他线程做了更新,则当前线程什么
都不做。最后,CAS返回当前V的真实值。CAS操作是抱着乐观的态度进行的,它总是认为自己可以成功完成
操作。当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失败。失败的线程
不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。基于这样的原理,CAS
操作即时没有锁,也可以发现其他线程对当前线程的干扰,并进行恰当的处理。
我们会发现,CAS的步骤太多,有没有可能在判断V和E相同后,正要赋值时,切换了线程,更改了值。造成了数据不一致呢?
事实上,这个担心是多余的。CAS整一个操作过程是一个原子操作,它是由一条CPU指令完成的。
1.2 CPU指令
CAS的CPU指令是cmpxchg
指令代码如下:
/* accumulator = AL, AX, or EAX, depending on whether a byte, word, or doubleword comparison is being performed */ if(accumulator == Destination) { ZF = 1; Destination = Source; } else { ZF = 0; accumulator = Destination; }
目标值和寄存器里的值相等的话,就设置一个跳转标志,并且把原始数据设到目标里面去。如果不等的话,就不设置跳转标志了。
Java当中提供了很多无锁类,下面来介绍下无锁类。
2 无所类的使用
我们已经知道,无锁比阻塞效率要高得多。我们来看看Java是如何实现这些无锁类的。
2.1. AtomicInteger
AtomicInteger和Integer一样,都继承与Number类
public class AtomicInteger extends Number implements java.io.Serializable
AtomicInteger里面有很多CAS操作,典型的有:
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
这里来解释一下unsafe.compareAndSwapInt方法,他的意思是,对于this这个类上的偏移量为valueOffset的变量值如果与期望值expect相同,那么把这个变量的值设为update。
其实偏移量为valueOffset的变量就是value
static { try { valueOffset = unsafe.objectFieldOffset (AtomicInteger.class.getDeclaredField("value")); } catch (Exception ex) { throw new Error(ex); } }
我们此前说过,CAS是有可能会失败的,但是失败的代价是很小的,所以一般的实现都是在一个无限循环体内,直到成功为止。
public final int getAndIncrement() { for (;;) { int current = get(); int next = current + 1; if (compareAndSet(current, next)) return current; } }
2.2 Unsafe
从类名就可知,Unsafe操作是非安全的操作,比如:
根据偏移量设置值(在刚刚介绍的AtomicInteger中已经看到了这个功能)
park()(把这个线程停下来,在以后的Blog中会提到)
底层的CAS操作
非公开API,在不同版本的JDK中,可能有较大差异
2.3. AtomicReference
前面已经提到了AtomicInteger,当然还有AtomicBoolean,AtomicLong等等,都大同小异。
这里要介绍的是AtomicReference。
AtomicReference是一种模板类
public class AtomicReference<V> implements java.io.Serializable
它可以用来封装任意类型的数据。
比如String
package test; import java.util.concurrent.atomic.AtomicReference; public class Test { public final static AtomicReference<String> atomicString = new AtomicReference<String>("hosee"); public static void main(String[] args) { for (int i = 0; i < 10; i++) { final int num = i; new Thread() { public void run() { try { Thread.sleep(Math.abs((int)Math.random()*100)); } catch (Exception e) { e.printStackTrace(); } if (atomicString.compareAndSet("hosee", "ztk")) { System.out.println(Thread.currentThread().getId() + "Change value"); }else { System.out.println(Thread.currentThread().getId() + "Failed"); } }; }.start(); } } }
结果:
10Failed
13Failed
9Change value
11Failed
12Failed
15Failed
17Failed
14Failed
16Failed
18Failed
可以看到只有一个线程能够修改值,并且后面的线程都不能再修改。
2.4.AtomicStampedReference
我们会发现CAS操作还是有一个问题的
比如之前的AtomicInteger的incrementAndGet方法
public final int incrementAndGet() { for (;;) { int current = get(); int next = current + 1; if (compareAndSet(current, next)) return next; } }
假设当前value=1当某线程int current = get()执行后,切换到另一个线程,这个线程将1变成了2,然后又一个线程将2又变成了1。此时再切换到最开始的那个线程,由于value仍等于1,所以还是能执行CAS操作,当然加法是没有问题的,如果有些情况,对数据的状态敏感时,这样的过程就不被允许了。
此时就需要AtomicStampedReference类。
其内部实现一个Pair类来封装值和时间戳。
private static class Pair<T> { final T reference; final int stamp; private Pair(T reference, int stamp) { this.reference = reference; this.stamp = stamp; } static <T> Pair<T> of(T reference, int stamp) { return new Pair<T>(reference, stamp); } }
这个类的主要思想是加入时间戳来标识每一次改变。
//比较设置 参数依次为:期望值 写入新值 期望时间戳 新时间戳
public boolean compareAndSet(V expectedReference, V newReference, int expectedStamp, int newStamp) { Pair<V> current = pair; return expectedReference == current.reference && expectedStamp == current.stamp && ((newReference == current.reference && newStamp == current.stamp) || casPair(current, Pair.of(newReference, newStamp))); }
当期望值等于当前值,并且期望时间戳等于现在的时间戳时,才写入新值,并且更新新的时间戳。
这里举个用AtomicStampedReference的场景,可能不太适合,但是想不到好的场景了。
场景背景是,某公司给余额少的用户免费充值,但是每个用户只能充值一次。
package test; import java.util.concurrent.atomic.AtomicStampedReference; public class Test { static AtomicStampedReference<Integer> money = new AtomicStampedReference<Integer>( 19, 0); public static void main(String[] args) { for (int i = 0; i < 3; i++) { final int timestamp = money.getStamp(); new Thread() { public void run() { while (true) { while (true) { Integer m = money.getReference(); if (m < 20) { if (money.compareAndSet(m, m + 20, timestamp, timestamp + 1)) { System.out.println("充值成功,余额:" + money.getReference()); break; } } else { break; } } } }; }.start(); } new Thread() { public void run() { for (int i = 0; i < 100; i++) { while (true) { int timestamp = money.getStamp(); Integer m = money.getReference(); if (m > 10) { if (money.compareAndSet(m, m - 10, timestamp, timestamp + 1)) { System.out.println("消费10元,余额:" + money.getReference()); break; } }else { break; } } try { Thread.sleep(100); } catch (Exception e) { // TODO: handle exception } } }; }.start(); } }
解释下代码,有3个线程在给用户充值,当用户余额少于20时,就给用户充值20元。有100个线程在消费,每次消费10元。用户初始有9元,当使用AtomicStampedReference来实现时,只会给用户充值一次,因为每次操作使得时间戳+1。运行结果:
充值成功,余额:39
消费10元,余额:29
消费10元,余额:19
消费10元,余额:9
如果使用AtomicReference<Integer>或者 Atomic Integer来实现就会造成多次充值。
充值成功,余额:39
消费10元,余额:29
消费10元,余额:19
充值成功,余额:39
消费10元,余额:29
消费10元,余额:19
充值成功,余额:39
消费10元,余额:29
2.5. AtomicIntegerArray
与AtomicInteger相比,数组的实现不过是多了一个下标。
public final boolean compareAndSet(int i, int expect, int update) {
return compareAndSetRaw(checkedByteOffset(i), expect, update);
}
它的内部只是封装了一个普通的array
private final int[] array;
里面有意思的是运用了二进制数的前导零来算数组中的偏移量。
shift = 31 - Integer.numberOfLeadingZeros(scale);
前导零的意思就是比如8位表示12,00001100,那么前导零就是1前面的0的个数,就是4。
具体偏移量如何计算,这里就不再做介绍了。
2.6. AtomicIntegerFieldUpdater
AtomicIntegerFieldUpdater类的主要作用是让普通变量也享受原子操作。
就比如原本有一个变量是int型,并且很多地方都应用了这个变量,但是在某个场景下,想让int型变成AtomicInteger,但是如果直接改类型,就要改其他地方的应用。AtomicIntegerFieldUpdater就是为了解决这样的问题产生的。
package test; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicIntegerFieldUpdater; public class Test { public static class V{ int id; volatile int score; public int getScore() { return score; } public void setScore(int score) { this.score = score; } } public final static AtomicIntegerFieldUpdater<V> vv = AtomicIntegerFieldUpdater.newUpdater(V.class, "score"); public static AtomicInteger allscore = new AtomicInteger(0); public static void main(String[] args) throws InterruptedException { final V stu = new V(); Thread[] t = new Thread[10000]; for (int i = 0; i < 10000; i++) { t[i] = new Thread() { @Override public void run() { if(Math.random()>0.4) { vv.incrementAndGet(stu); allscore.incrementAndGet(); } } }; t[i].start(); } for (int i = 0; i < 10000; i++) { t[i].join(); } System.out.println("score="+stu.getScore()); System.out.println("allscore="+allscore); } }
上述代码将score使用 AtomicIntegerFieldUpdater变成 AtomicInteger。保证了线程安全。
这里使用allscore来验证,如果score和allscore数值相同,则说明是线程安全的。
小说明: