时间:2022-12-14 10:28:30 | 栏目:JAVA代码 | 点击:次
ThreadLocal 提供了一种方式,让在多线程环境下,每个线程都可以拥有自己独特的数据,并且可以在整个线程执行过程中,从上而下的传递。
可能很多同学没有使用过 ThreadLocal,我们先来演示下 ThreadLocal 的用法,demo 如下:
/** * ThreadLocal 中保存的数据是 Map */ static final ThreadLocal<Map<String, String>> context = new ThreadLocal<>(); @Test public void testThread() { // 从上下文中拿出 Map Map<String, String> contextMap = context.get(); if (CollectionUtils.isEmpty(contextMap)) { contextMap = Maps.newHashMap(); } contextMap.put("key1", "value1"); context.set(contextMap); log.info("key1,value1被放到上下文中"); // 从上下文中拿出刚才放进去的数据 getFromComtext(); } private String getFromComtext() { String value1 = context.get().get("key1"); log.info("从 ThreadLocal 中取出上下文,key1 对应的值为:{}", value1); return value1; } //运行结果: demo.ninth.ThreadLocalDemo - key1,value1被放到上下文中 demo.ninth.ThreadLocalDemo - 从 ThreadLocal 中取出上下文,key1 对应的值为:value1
从运行结果中可以看到,key1 对应的值已经从上下文中拿到了。
getFromComtext 方法是没有接受任何入参的,通过 context.get().get(“key1”) 这行代码就从上下文中拿到了 key1 的值,接下来我们一起来看下 ThreadLocal 底层是如何实现上下文的传递的。
ThreadLocal 定义类时带有泛型,说明 ThreadLocal 可以储存任意格式的数据,源码如下:
public class ThreadLocal<T> {}
ThreadLocal 有几个关键属性,我们一一看下:
// threadLocalHashCode 表示当前 ThreadLocal 的 hashCode,用于计算当前 ThreadLocal 在 ThreadLocalMap 中的索引位置 private final int threadLocalHashCode = nextHashCode(); // 计算 ThreadLocal 的 hashCode 值(就是递增) private static int nextHashCode() { return nextHashCode.getAndAdd(HASH_INCREMENT); } // static + AtomicInteger 保证了在一台机器中每个 ThreadLocal 的 threadLocalHashCode 是唯一的 // 被 static 修饰非常关键,因为一个线程在处理业务的过程中,ThreadLocalMap 是会被 set 多个 ThreadLocal 的,多个 ThreadLocal 就依靠 threadLocalHashCode 进行区分 private static AtomicInteger nextHashCode = new AtomicInteger();
还有一个重要属性:ThreadLocalMap,当一个线程有多个 ThreadLocal 时,需要一个容器来管理多个 ThreadLocal,ThreadLocalMap 的作用就是这个,管理线程中多个 ThreadLocal。
ThreadLocalMap 本身就是一个简单的 Map 结构,key 是 ThreadLocal,value 是 ThreadLocal 保存的值,底层是数组的数据结构,源码如下:
// threadLocalHashCode 表示当前 ThreadLocal 的 hashCode,用于计算当前 ThreadLocal 在 ThreadLocalMap 中的索引位置 private final int threadLocalHashCode = nextHashCode(); // 计算 ThreadLocal 的 hashCode 值(就是递增) private static int nextHashCode() { return nextHashCode.getAndAdd(HASH_INCREMENT); } // static + AtomicInteger 保证了在一台机器中每个 ThreadLocal 的 threadLocalHashCode 是唯一的 // 被 static 修饰非常关键,因为一个线程在处理业务的过程中,ThreadLocalMap 是会被 set 多个 ThreadLocal 的,多个 ThreadLocal 就依靠 threadLocalHashCode 进行区分 private static AtomicInteger nextHashCode = new AtomicInteger();
从源码中看到 ThreadLocalMap 其实就是一个简单的 Map 结构,底层是数组,有初始化大小,也有扩容阈值大小,数组的元素是 Entry,Entry 的 key 就是 ThreadLocal 的引用,value 是 ThreadLocal 的值。
ThreadLocal 是线程安全的,我们可以放心使用,主要因为是 ThreadLocalMap 是线程的属性,我们看下线程 Thread 的源码,如下:
从上图中,我们可以看到 ThreadLocals.ThreadLocalMap 和 InheritableThreadLocals.ThreadLocalMap 分别是线程的属性,所以每个线程的 ThreadLocals 都是隔离独享的。
父线程在创建子线程的情况下,会拷贝 inheritableThreadLocals 的值,但不会拷贝 threadLocals 的值,源码如下:
从上图中我们可以看到,在线程创建时,会把父线程的 inheritableThreadLocals 属性值进行拷贝。
set 方法的主要作用是往当前 ThreadLocal 里面 set 值,假如当前 ThreadLocal 的泛型是 Map,那么就是往当前 ThreadLocal 里面 set map,源码如下:
// set 操作每个线程都是串行的,不会有线程安全的问题 public void set(T value) { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); // 当前 thradLocal 之前有设置值,直接设置,否则初始化 if (map != null) map.set(this, value); // 初始化ThreadLocalMap else createMap(t, value); }
代码逻辑比较清晰,我们在一起来看下 ThreadLocalMap.set 的源码,如下:
private void set(ThreadLocal<?> key, Object value) { Entry[] tab = table; int len = tab.length; // 计算 key 在数组中的下标,其实就是 ThreadLocal 的 hashCode 和数组大小-1取余 int i = key.threadLocalHashCode & (len-1); // 整体策略:查看 i 索引位置有没有值,有值的话,索引位置 + 1,直到找到没有值的位置 // 这种解决 hash 冲突的策略,也导致了其在 get 时查找策略有所不同,体现在 getEntryAfterMiss 中 for (Entry e = tab[i]; e != null; // nextIndex 就是让在不超过数组长度的基础上,把数组的索引位置 + 1 e = tab[i = nextIndex(i, len)]) { ThreadLocal<?> k = e.get(); // 找到内存地址一样的 ThreadLocal,直接替换 if (k == key) { e.value = value; return; } // 当前 key 是 null,说明 ThreadLocal 被清理了,直接替换掉 if (k == null) { replaceStaleEntry(key, value, i); return; } } // 当前 i 位置是无值的,可以被当前 thradLocal 使用 tab[i] = new Entry(key, value); int sz = ++size; // 当数组大小大于等于扩容阈值(数组大小的三分之二)时,进行扩容 if (!cleanSomeSlots(i, sz) && sz >= threshold) rehash(); }
上面源码我们注意几点:
好在日常工作中使用 ThreadLocal 时,常常只使用 1~2 个 ThreadLocal,通过 hash 计算出重复的数组的概率并不是很大。
set 时的解决数组元素位置冲突的策略,也对 get 方法产生了影响,接着我们一起来看一下 get 方法。
get 方法主要是从 ThreadLocalMap 中拿到当前 ThreadLocal 储存的值,源码如下:
public T get() { // 因为 threadLocal 属于线程的属性,所以需要先把当前线程拿出来 Thread t = Thread.currentThread(); // 从线程中拿到 ThreadLocalMap ThreadLocalMap map = getMap(t); if (map != null) { // 从 map 中拿到 entry,由于 ThreadLocalMap 在 set 时的 hash 冲突的策略不同,导致拿的时候逻辑也不太一样 ThreadLocalMap.Entry e = map.getEntry(this); // 如果不为空,读取当前 ThreadLocal 中保存的值 if (e != null) { @SuppressWarnings("unchecked") T result = (T)e.value; return result; } } // 否则给当前线程的 ThreadLocal 初始化,并返回初始值 null return setInitialValue(); }
接着我们来看下 ThreadLocalMap 的 getEntry 方法,源码如下:
// 得到当前 thradLocal 对应的值,值的类型是由 thradLocal 的泛型决定的 // 由于 thradLocalMap set 时解决数组索引位置冲突的逻辑,导致 thradLocalMap get 时的逻辑也是对应的 // 首先尝试根据 hashcode 取模数组大小-1 = 索引位置 i 寻找,找不到的话,自旋把 i+1,直到找到索引位置不为空为止 private Entry getEntry(ThreadLocal<?> key) { // 计算索引位置:ThreadLocal 的 hashCode 取模数组大小-1 int i = key.threadLocalHashCode & (table.length - 1); Entry e = table[i]; // e 不为空,并且 e 的 ThreadLocal 的内存地址和 key 相同,直接返回,否则就是没有找到,继续通过 getEntryAfterMiss 方法找 if (e != null && e.get() == key) return e; else // 这个取数据的逻辑,是因为 set 时数组索引位置冲突造成的 return getEntryAfterMiss(key, i, e); }
// 自旋 i+1,直到找到为止 private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) { Entry[] tab = table; int len = tab.length; // 在大量使用不同 key 的 ThreadLocal 时,其实还蛮耗性能的 while (e != null) { ThreadLocal<?> k = e.get(); // 内存地址一样,表示找到了 if (k == key) return e; // 删除没用的 key if (k == null) expungeStaleEntry(i); // 继续使索引位置 + 1 else i = nextIndex(i, len); e = tab[i]; } return null; }
get 逻辑源码中注释已经写的很清楚了,我们就不重复说了。
ThreadLocalMap 中的 ThreadLocal 的个数超过阈值时,ThreadLocalMap 就要开始扩容了,我们一起来看下扩容的逻辑:
//扩容 private void resize() { // 拿出旧的数组 Entry[] oldTab = table; int oldLen = oldTab.length; // 新数组的大小为老数组的两倍 int newLen = oldLen * 2; // 初始化新数组 Entry[] newTab = new Entry[newLen]; int count = 0; // 老数组的值拷贝到新数组上 for (int j = 0; j < oldLen; ++j) { Entry e = oldTab[j]; if (e != null) { ThreadLocal<?> k = e.get(); if (k == null) { e.value = null; // Help the GC } else { // 计算 ThreadLocal 在新数组中的位置 int h = k.threadLocalHashCode & (newLen - 1); // 如果索引 h 的位置值不为空,往后+1,直到找到值为空的索引位置 while (newTab[h] != null) h = nextIndex(h, newLen); // 给新数组赋值 newTab[h] = e; count++; } } } // 给新数组初始化下次扩容阈值,为数组长度的三分之二 setThreshold(newLen); size = count; table = newTab; }
源码注解也比较清晰,我们注意两点:
ThreadLocal 是非常重要的 API,我们在写一个中间件的时候经常会用到,比如说流程引擎中上下文的传递,调用链ID的传递等等,非常好用,但坑也很多。