当前位置:主页 > 软件编程 > JAVA代码 >

Java内存模型final的内存语义

时间:2022-10-13 14:16:39 | 栏目:JAVA代码 | 点击:

上篇并发编程之Java内存模型volatile的内存语义介绍了volatile的内存语义,本文讲述的是final的内存语义,相比之下,final域的读和写更像是普通变量的访问。

1、final域的重排序规则final

对于final域编译器和处理器遵循两个重排序规则

用代码来说明上面两种重排序规则:

package com.lizba.p1;

/**
 * <p>
 *
 * </p>
 *
 * @Author: Liziba
 * @Date: 2021/6/11 20:37
 */
public class FinalExample {

    /** 普通变量 */
    int i;
    /** final变量 */
    final int j;
    /** 对象引用 */
    static FinalExample obj;

    /**
     * 构造函数
     */
    public FinalExample() {
        // 写普通域
        this.i = 1;
        // 写final域
        this.j = 2;
    }

    /**
     * 线程A执行writer写方法
     *
     */
    public static void writer() {
        obj = new FinalExample();
    }

    /**
     * 线程B执行reader读方法
     *
     */
    public static void reader() {
        // 读对象的引用
        FinalExample finalExample = obj;
        // 读普通域
        int a = finalExample.i;
        // 读final域
        int b = finalExample.j;
    }
}

假设线程A执行writer()方法,线程B执行reader()方法。下面来通过这两个线程的交互来说明这两个规则。

2、写final域的重排序规则

写final域的重排序禁止吧final域的写重排序到构造函数之外。通过如下方式来实现:

现在开始分析writer()方法:

 /**
   * 线程A执行writer写方法
   *
   */
public static void writer() {
    obj = new FinalExample();
}

首先假设线程B读对象引用与读对象的成员域之间没有重排序,则下图是其一种执行可能

 线程执行时序图:

3、读final与的重排序规则

读final域的重排序规则是,在一个线程中,初次读对象引用与初次读该对象包含的final域,JMM禁止处理器重排序这两个操作(注意是处理器)。编译器会在读final域操作的前面插入一个LoadLoad屏障。

解释:初次读对象引用与初次读该对象包含的final域,这两个操作之间存在间接依赖关系。

分析reader()方法:

  /**
    * 线程B执行reader读方法
    *
    */
public static void reader() {
    // 读对象的引用
    FinalExample finalExample = obj;
    // 读普通域
    int a = finalExample.i;
    // 读final域
    int b = finalExample.j;
}

假设B线程所处的处理器不遵守间接依赖关系,且A线程执行过程中没有发生任何重排序,此时存在如下的执行时序:

线程执行时序图:

上图B线程中读对象的普通域被重排序到处理器读取对象引用之前, 此时普通域i还没有被线程A写入,因此这是一个错误的读取操作。但是final域的读取会被重排序规则把读final域的操作“限定”在读该final域所属对象的引用读取之后,此时final域已经被正确的初始化了,这是一个正确的读取操作。

总结:

读final域的重排序规则可以确保,在读一个对象的final域之前,一定会先读包含这个final域的对象的引用。

4、final域为引用类型

上面讲述了基础数据类型,如果final域修饰的引用类型又该如何?

package com.lizba.p1;

/**
 * <p>
 *      final 修饰引用类型变量
 * </p>
 *
 * @Author: Liziba
 * @Date: 2021/6/11 21:52
 */
public class FinalReferenceExample {

    /** final是引用类型 */
    final int[] intArray;
    static FinalReferenceExample obj;
    
    /**
     * 构造函数
     */
    public FinalReferenceExample() {
        this.intArray = new int[1];  // 1
        intArray[0] = 1;             // 2
    }

    /**
     * 写线程A执行
     */
    public static void writer1() {
        obj = new FinalReferenceExample();      // 3
    }

    /**
     * 写线程B执行
     */
    public static void writer2() {
        obj.intArray[0] = 2;                    // 4
    }

    /**
     * 读线程C执行
     */
    public static void reader() {
        if (obj != null) {                      // 5
            int temp = obj.intArray[0];         // 6
        }
    }
}

如上final域为一个int类型的数组的引用变量。对应引用类型,写final域的重排序对编译器和处理器增加了如下约束:

对于上述程序,假设A执行writer1()方法,执行完后线程B执行writer2()方法,执行完后线程C执行reader()方法。则存在如下线

程执行时序:引用型final的执行时序图

JMM对于上述代码,可以确保读线程C至少能看到写线程A在构造函数中对final引用对象的成员域的写入。即写线程C至少能看到数组下标0的值为1。但是写线程B对数组元素的写入,读线程C可能看得到可能看不到。JMM不能保证线程B的写入对读线程C可见。因为写线程B和读线程C之间存在数据竞争,此时的执行结果不可预知。

此时如果想确保读线程C看到写线程B对数组元素的写入,可以结合同步原语(volatile或者lock)来实现。

5、为什么final引用不能从构造函数内“逸出”

本文一直在说写final域的重排序规则可以确保:在引用变量为任意线程可见之前,该引用变量指向的对象的final域已经在构造函数中被正确初始化了。那究竟是如何实现的呢?

其实这需要另一个条件:在构造函数内部,不能让这个被构造对象的引用被其它线程所见。也就是对象引用不能在构造函数中“逸出”。

示例代码:

package com.lizba.p1;

/**
 * <p>
 *   final引用逸出demo
 * </p>
 *
 * @Author: Liziba
 * @Date: 2021/6/11 22:33
 */
public class FinalReferenceEscapeExample {

    final int i;
    static FinalReferenceEscapeExample obj;

    public FinalReferenceEscapeExample() {
        i = 1;                            // 1、写final域
        obj = this;              // 2、this引用在此处"逸出"
    }

    public static void writer() {
        new FinalReferenceEscapeExample();
    }

    public static void reader() {
        if (obj != null) {                 // 3
            int temp = obj.i;              // 4
        }
    }
}

假设线程A执行writer()方法,线程B执行reader()方法。这里操作2导致对象还未完成构造前就对线程B可见了。因为1和2允许重排序,所以线程B可能无法看到final域被正确初始化后的值。实际执行的时序图可能如下所示:

多线程执行时序图:

总结:

在构造函数返回之前,被构造对象的引用不能为其他线程可见,因为此时的final域可能还没被初始化。而在构造函数返回后,任意线程都将保证能看到final域正确初始化之后的值。

6、final语义在处理器中的实现

举例X86处理器中final语义的具体实现。

在编译器中会存在如下的处理:

但是,由于X86处理器不会对写-写操作做重排序,所以在X86处理器中,写final域需要的StoreStore屏障会被省略。同样,由于X86处理器不会对存在间接依赖关系的操作做重排序,所以在X86处理器中,读final域需要的LoadLoad屏障也会被省略掉。因此,在X86处理器中,final域的读/写不会插入任何内存屏障。

7、JSR-133为什么要增强final的语义

在旧的Java内存模型中,一个最严重的缺陷就是现场可能看到final域的值会改变。比如一个线程读取一个被final域的值为0(未初始化之前的默认值),过一段时间再读取初始化后的final域的值,却发现变为了1。因此为了修复此漏洞,JSR-133增强了final语义。

总结:

通过为final增加写和读重排序规则,可以为Java程序员提供初始化安全保障:只要对象正确构造(被构造对象额引用在构造函数中没有“逸出”),那么不需要使用同步原语(volatile和lock的使用)就可以保障任意线程都能看到这个final域在构造函数中被初始化之后的值。

您可能感兴趣的文章:

相关文章