时间:2022-09-02 08:45:26 | 栏目:JAVA代码 | 点击:次
二叉搜索树是一种特殊的二叉树,又称二叉查找树,二叉排序树,它有几个特点:
我们来简单实现以下搜索树,就不使用泛型了,二叉搜索树基本结构:
public class BinarySearchTree { static class Node { public int val; public Node left; public Node right; public Node(int val) { this.val = val; } } public Node root; //其他方法 }
二叉搜索树最擅长的就是查找,根据二叉搜索树的定义,左子树的元素比根小,右子树的元素比根大,所以我们只需要根据根结点的值与目标元素的值比较,就能实现查找功能。
参考实现代码:
public Node search(int key) { Node cur = this.root; while (cur != null) { //根与目标元素相等,表示找到了。 if (cur.val == key) return cur; //根比目标元素大,去左子树找。 else if (cur.val > key) cur = cur.left; //根比目标元素小,去右子树找。 else cur = cur.right; } //此时cur = null, 左右子树找不到,那就找不到了。 return cur; }
需要在二叉搜索树中插入一个元素,首先得找到一个合适的插入位置,如何找呢?其实就是利用搜索树查找的方式,找到一个空位,如何将目标结点插入到这个位置。
由于你找到空位时,无法获取该空位的前一个位置,所以每次查找的时候都需要保存上一次查找的位置。
找到位置后,将目标结点插入到该位置。
参考实现代码:
public boolean insert(int val) { //结点为空,直接插 if(root == null) { root = new Node(val); return true; } Node cur = this.root; //当前查找位置 Node parent = null; //查找的上一个位置 while (cur != null) { parent = cur; if (val > cur.val) cur = cur.right; else if (val < cur.val) cur = cur.left; else return false; } //开始插入,找到空位前一个位置,比插入元素小,空位在右边,插入右边 if (val > parent.val) { parent.right = new Node(val); } else { //比插入元素大,空位在左边,插入左边 parent.left = new Node(val); } return true; }
删除是搜索树基本操作中最麻烦的一个操作,需要考虑多种情况。
不妨设需要删除的结点为cur
,cur
的父结点为parent
,搜索树的根结点为root
。首先需要删除结点,那就得找到结点,所以第一步是找结点,思路与查找的思路一模一样。
第二步那就是删除了,删除结点大概有下面几种情况:
情况1:cur.left == null
情况2:cur.right == null
情况3:cur.left != null && cur.right != null
方案1:找到cur右子树中最小的元素target
,然后将该元素的值覆盖到cur处(可以理解为交换),此时等价于删除target
处的结点,即该结点的父结点为preTarget
。
因为target
为cur
右子树最小的一个结点,所以target.left == null
,此时preTarget.left == target
,所以删除时按照上面的情况1去进行删除。
但是还有一种特殊情况,那就是cur.right
就是最小结点,此时preTarget==cur
,即preTarget.right == target
,这时删除时要将 preTarget.right = target.right。
方案2:找到cur左子树中最大的元素target
,然后将该元素的值覆盖到cur处(可以理解为交换),此时等价于删除target
处的结点,即该结点的父结点为preTarget
。
因为target
为cur
左子树最大的一个结点,所以target.right == null
,此时preTarget.right == target
,所以删除时按照上面的情况2去进行删除。
但是还有一种特殊情况,那就是cur.left
就是左子树最大结点,此时preTarget==cur
,即preTarget.left == target
,这时删除时要将 preTarget.left = target.left。
参考实现代码:
public void remove(int key) { Node cur = root; Node parent = null; while (cur != null) { if(cur.val == key) { //这里开始删除 removeNode(cur,parent); break; }else if(cur.val < key) { parent = cur; cur = cur.right; }else { parent = cur; cur = cur.left; } } }
removeNode方法(方案1):
public void removeNode(Node cur,Node parent) { if(cur.left == null) { if(cur == root) { root = cur.right; }else if(cur == parent.left) { parent.left = cur.right; }else { parent.right = cur.right; } }else if(cur.right == null) { if(cur == root) { root = cur.left; }else if(cur == parent.left) { parent.left = cur.left; }else { parent.right = cur.left; } }else { Node preTarget = cur ; Node target = cur.right; while (target.left != null) { preTarget = target; target = target.left; } cur.val = target.val; if (target == preTarget.left) { preTarget.left = target.right; } else { preTarget.right = target.right; } } }
removeNode方法(方案2):
public void removeNode(Node cur,Node parent) { if(cur.left == null) { if(cur == root) { root = cur.right; }else if(cur == parent.left) { parent.left = cur.right; }else { parent.right = cur.right; } }else if(cur.right == null) { if(cur == root) { root = cur.left; }else if(cur == parent.left) { parent.left = cur.left; }else { parent.right = cur.left; } }else { Node preTarget = cur ; Node target = cur.left; while (target.right != null) { preTarget = target; target = target.right; } cur.val = target.val; if (target == preTarget.left) { preTarget.left = target.left; } else { preTarget.right = target.left; } } }
搜索树的修改可以基于删除和插入,先删除目标元素,然后再插入修改元素。
参考实现代码:
public void set(int key, int val) { remove(key); insert(val); }
在平衡二叉树的情况下(左右子树高度差不超过1),假设有n个结点,此时时间复杂度为二叉树的高度,即 O ( l o g 2 n ) O(log_2n) O(log2?n),但是这只是例行情况,最不理想的情况就是二叉树化为单分支树,时间复杂为 O ( n ) O(n) O(n)。
为了解决这个问题,后面引申出AVL树,红黑树,其中TreeMap与TreeSet的底层就是红黑树。具体红黑树是什么,这里就不多说了。
本文到底了,你学会了吗?