当前位置:主页 > 软件编程 > JAVA代码 >

Java8中AbstractExecutorService与FutureTask源码详解

时间:2022-07-22 10:55:00 | 栏目:JAVA代码 | 点击:

前言

本篇博客重点讲解ThreadPoolExecutor的三个基础设施类AbstractExecutorService、FutureTask和ExecutorCompletionService的实现细节,AbstractExecutorService实现了ExecutorService的大部分接口,子类只需实现excute方法和shutdown相关方法即可;FutureTask是RunnableFuture接口的主要实现,该接口是Runnable和Future的包装类接口,会执行Runnable对应的run方法,调用方可以通过Future接口获取任务的执行状态和结果;ExecutorCompletionService是帮助获取多个RunnableFuture任务的执行结果的工具类,基于FutureTask执行完成时的回调方法done实现的。

一、AbstractExecutorService

1、定义

ThreadPoolExecutor的类继承关系如下:

其中ExecutorService的子类如下:

右上角带S的表示内部类,我们重点关注ThreadPoolExecutor,ScheduledThreadPoolExecutor和ForkJoinPool三个类的实现,后面两个类会在后面的博客中逐一探讨。

Executor包含的方法如下:

ExecutorService包含的方法如下:

上述接口方法中涉及的Callable接口的定义如下:

该接口也是表示一个执行任务,跟常见的Runnable接口的区别在于call方法有返回值而run方法没有返回值。 

Future表示某个任务的执行结果,其定义的方法如下:

其子类比较多,如下:

后面会将涉及的子类逐一探讨的。 AbstractExecutorService基于Executor接口的excute方法实现了大部分的ExecutorService的接口,子类只需要重点实现excute方法和shutdown相关方法即可,下面来分析其具体的实现。

2、submit

//Runnable接口方法没有返回值,但是可以通过Future判断任务是否执行完成
public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null);
        execute(ftask);
        return ftask;
    }
 
//因为Runnable的run方法没有返回值,所以如果run方法正常执行完成,其结果就是result
public <T> Future<T> submit(Runnable task, T result) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task, result);
        execute(ftask);
        return ftask;
    }
 
public <T> Future<T> submit(Callable<T> task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
    }
 
//都是返回FutureTask
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
        return new FutureTask<T>(runnable, value);
    }
 
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
        return new FutureTask<T>(callable);
    }

3、invokeAll

//执行完成tasks中所有的任务,如果有一个抛出异常,则取消掉剩余的任务
public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
        throws InterruptedException {
        if (tasks == null)
            throw new NullPointerException();
        ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
        boolean done = false;
        try {
            //遍历tasks中的任务将其转换成RunnableFuture,然后提交到线程池执行
            for (Callable<T> t : tasks) {
                RunnableFuture<T> f = newTaskFor(t);
                futures.add(f);
                execute(f);
            }
            //遍历Future列表
            for (int i = 0, size = futures.size(); i < size; i++) {
                Future<T> f = futures.get(i);
                if (!f.isDone()) { //如果未执行完成
                    try {
                        //等待任务执行完成
                        f.get();
                    } catch (CancellationException ignore) {
                    } catch (ExecutionException ignore) {
                    }
                }
            }
            //所有任务都执行完了
            done = true;
            return futures;
        } finally {
            if (!done)
                //出现异常,将所有的任务都取消掉
                for (int i = 0, size = futures.size(); i < size; i++)
                    futures.get(i).cancel(true);
        }
    }
 
//逻辑同上,不过加了等待时间限制,所有的任务的累计时间不能超过指定值,如果超时直接返回Future列表
public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
                                         long timeout, TimeUnit unit)
        throws InterruptedException {
        if (tasks == null)
            throw new NullPointerException();
        //转换成纳秒    
        long nanos = unit.toNanos(timeout);
        ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
        boolean done = false;
        try {
            //转换成Future
            for (Callable<T> t : tasks)
                futures.add(newTaskFor(t));
            
            //计算终止时间
            final long deadline = System.nanoTime() + nanos;
            final int size = futures.size();
 
            for (int i = 0; i < size; i++) {
                execute((Runnable)futures.get(i));
                nanos = deadline - System.nanoTime(); //计算剩余时间
                if (nanos <= 0L) //如果超时了则直接返回
                    return futures;
            }
 
            for (int i = 0; i < size; i++) {
                Future<T> f = futures.get(i);
                if (!f.isDone()) { //任务未执行
                    if (nanos <= 0L)
                        return futures; //等待超时
                    try {
                        //等待任务执行完成
                        f.get(nanos, TimeUnit.NANOSECONDS);
                    } catch (CancellationException ignore) {
                    } catch (ExecutionException ignore) {
                    } catch (TimeoutException toe) {
                        return futures;
                    }
                    nanos = deadline - System.nanoTime();
                }
            }
            done = true;
            return futures;
        } finally {
            if (!done) //出现异常,取消掉剩余未执行的任务
                for (int i = 0, size = futures.size(); i < size; i++)
                    futures.get(i).cancel(true);
        }
    }

4、invokeAny

//多个任务只要有一个执行成功就返回,并把剩余的已提交未执行的任务给取消掉
public <T> T invokeAny(Collection<? extends Callable<T>> tasks)
        throws InterruptedException, ExecutionException {
        try {
            return doInvokeAny(tasks, false, 0);
        } catch (TimeoutException cannotHappen) {
            assert false;
            return null;
        }
    }
 
//多个任务只要有一个执行成功就返回,并把剩余的已提交未执行的任务给取消掉
//如果指定时间内没有执行成功的,则抛出TimeoutException 异常
public <T> T invokeAny(Collection<? extends Callable<T>> tasks,
                           long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
        return doInvokeAny(tasks, true, unit.toNanos(timeout));
    }
 
private <T> T doInvokeAny(Collection<? extends Callable<T>> tasks,
                              boolean timed, long nanos)
        throws InterruptedException, ExecutionException, TimeoutException {
        //参数校验
        if (tasks == null)
            throw new NullPointerException();
        int ntasks = tasks.size();
        if (ntasks == 0)
            throw new IllegalArgumentException();
        ArrayList<Future<T>> futures = new ArrayList<Future<T>>(ntasks);
        ExecutorCompletionService<T> ecs =
            new ExecutorCompletionService<T>(this);
 
        try {
           
            ExecutionException ee = null;
            final long deadline = timed ? System.nanoTime() + nanos : 0L;
            Iterator<? extends Callable<T>> it = tasks.iterator();
 
            //提交一个任务
            futures.add(ecs.submit(it.next()));
            --ntasks;
            int active = 1;
 
            for (;;) {
                //获取最新的已完成任务
                Future<T> f = ecs.poll();
                if (f == null) {
                    //没有执行完的
                    if (ntasks > 0) {
                        --ntasks;
                        //继续添加下一个任务
                        futures.add(ecs.submit(it.next()));
                        ++active;
                    }
                    else if (active == 0) //所有任务都执行失败了,没有执行成功的
                        break;
                    else if (timed) { //等待超时
                        f = ecs.poll(nanos, TimeUnit.NANOSECONDS);
                        if (f == null)
                            throw new TimeoutException();
                        //计算剩余等待时间
                        nanos = deadline - System.nanoTime();
                    }
                    else
                        //所有任务都提交了,阻塞等待某个任务执行完成
                        f = ecs.take();
                }
                if (f != null) {
                    --active;
                    try {
                        //某个任务已执行完成,如果抛出异常则执行下一个任务
                        return f.get();
                    } catch (ExecutionException eex) {
                        ee = eex;
                    } catch (RuntimeException rex) {
                        ee = new ExecutionException(rex);
                    }
                }
            } //for循环终止
            
            //所有任务都执行失败了
            if (ee == null)
                ee = new ExecutionException();
            throw ee;
 
        } finally {
            //返回前,将未执行完成的任务都取消掉
            for (int i = 0, size = futures.size(); i < size; i++)
                futures.get(i).cancel(true);
        }
    }

二、FutureTask

1、定义

FutureTask的类继承关系如下:

    

RunnableFuture接口没有新增方法,将Runnable的run方法由public改成包级访问了,如下:

该类包含的实例属性如下:

    /** 执行的任务*/
    private Callable<V> callable;
    
    /** 任务执行的结果或者执行过程中抛出的异常 */
    private Object outcome; // non-volatile, protected by state reads/writes
    
    /** 执行任务的线程 */
    private volatile Thread runner;
    
    /** 等待线程的链表*/
    private volatile WaitNode waiters;
 
    //状态
    private volatile int state;

其中WaitNode是一个简单的内部类,其定义如下:

该类包含的静态属性都是字段偏移量,通过static代码块初始化,如下:

FutureTask定义了多个表示状态的常量,如下:

    //初始状态
    private static final int NEW          = 0;
    
    //是一个很短暂的中间状态,表示任务已执行完成,保存完执行结果后就流转成NORMAL或者EXCEPTIONAL
    private static final int COMPLETING   = 1;
    
    //正常执行完成
    private static final int NORMAL       = 2;
    
    //异常终止
    private static final int EXCEPTIONAL  = 3;
    
    //任务被取消了
    private static final int CANCELLED    = 4;
    
    //是一个很短暂的中间状态,调用interrupt方法后,会将状态流转成INTERRUPTED
    private static final int INTERRUPTING = 5;
    
    //任务执行已中断
    private static final int INTERRUPTED  = 6;

可能的状态流转如下图:

2、构造方法

public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       //初始状态是NEW
    }
 
public FutureTask(Runnable runnable, V result) {
        //将Runnable适配成Callable
        this.callable = Executors.callable(runnable, result);
        this.state = NEW;       // ensure visibility of callable
    }
 
//Executors方法
public static <T> Callable<T> callable(Runnable task, T result) {
        if (task == null)
            throw new NullPointerException();
        return new RunnableAdapter<T>(task, result);
    }

其中RunnableAdapter是Executors的一个静态内部类,其实现如下:

3、get 

get方法用于阻塞当前线程直到任务执行完成,如果阻塞的过程中被中断则抛出异常InterruptedException,可以限制阻塞的时间,如果等待超时还是未完成则抛出异常TimeoutException。

//阻塞当前线程等待任务执行完成
public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING) //如果未完成
            s = awaitDone(false, 0L);
        return report(s);
    }
 
//同上,可以限制等待的时间
public V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
        if (unit == null)
            throw new NullPointerException();
        int s = state;
        if (s <= COMPLETING &&
             //阻塞当前线程,如果返回值还是未完成说明是等待超时了,则抛出异常
            (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING) 
            throw new TimeoutException();
        return report(s);
    }
 
//timed为true表示等待指定的时间,否则是无期限等待
//该方法返回退出此方法时的状态
private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        //计算等待的终止时间
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            if (Thread.interrupted()) { //如果当前线程被中断了,则从等待链表中移除,并抛出异常
                removeWaiter(q);
                throw new InterruptedException();
            }
 
            int s = state;
            if (s > COMPLETING) { //如果任务已执行完
                if (q != null)
                    q.thread = null; 
                return s;
            }
            else if (s == COMPLETING) //正在状态流转的过程中,让出当前CPU时间片
                Thread.yield();
            //未开始执行    
            else if (q == null)
                q = new WaitNode(); 
            else if (!queued)
                //修改waiters属性,插入到链表头
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            //已插入到链表中
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) { //等待超时,从链表中移除
                    removeWaiter(q);
                    return state;
                }
                //让当前线程休眠
                LockSupport.parkNanos(this, nanos);
            }
            else
                //让当前线程休眠
                LockSupport.park(this);
        }
    }
 
private void removeWaiter(WaitNode node) {
        if (node != null) {
            node.thread = null;//将thread置为null
            retry:
            for (;;) {          // restart on removeWaiter race
                for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
                    s = q.next;
                    if (q.thread != null)
                        pred = q;
                    //q.thread为null,需要被移除    
                    else if (pred != null) {
                        pred.next = s; //将q从链表移除
                        if (pred.thread == null) //如果为null,则从头开始遍历
                            continue retry;
                    }
                    //q.thread为null,pred为null,之前没有有效节点,修改waiters,修改失败重试
                    else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                          q, s))
                        continue retry;
                }
                break;
            }
        }
    }
 
//awaitDone正常返回后调用此方法,此时状态应该是COMPLETING之后了
private V report(int s) throws ExecutionException {
        Object x = outcome;
        if (s == NORMAL) //如果是正常结束
            return (V)x;
        if (s >= CANCELLED) //如果被取消了
            throw new CancellationException();
        throw new ExecutionException((Throwable)x); //如果出现异常了
    }

4、run / runAndReset

run方法是有线程池调用的,会执行Callable任务,保存执行的结果,如果出现异常则保存异常对象,并完成状态流转,最后将等待任务完成的阻塞中的线程唤醒。runAndReset和run类似,区别在于runAndReset正常执行完成后不会保存执行的结果,不会改变状态,状态还是NEW,如果是正常执行则返回true,该方法是子类使用的,其调用链如下:

这两方法的实现如下: 

 
//由线程池中的某个线程调用此方法
public void run() {
        //如果不等于NEW,说明其他某个线程正在执行任务
        //如果等于NEW,则cas修改runner属性,修改失败说明其他某个线程也准备执行这个任务
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        //cas成功表示这个任务由当前线程抢占成功    
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    //执行任务
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    //出现异常
                    result = null;
                    ran = false;
                    setException(ex); //保存异常对象
                }
                if (ran)
                    //执行成功保存结果
                    set(result);
            }
        } finally {
            //如果任务被cancel了,则上述setException和set方法因为状态不是NEW了会直接返回
            runner = null;
            int s = state;
            if (s >= INTERRUPTING) //如果被中断,自旋等待中断完成
                handlePossibleCancellationInterrupt(s);
        }
    }
 
//跟run方法相比区别就是正常执行完成不会保存结果,不会流转状态
protected boolean runAndReset() {
        //如果state不是NEW或者cas修改runner失败
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return false;
        boolean ran = false;
        int s = state;
        try {
            Callable<V> c = callable;
            if (c != null && s == NEW) {
                try {
                    //执行任务,但是不保存结果,状态就不会从NEW流转成NORMAL
                    c.call(); // don't set result
                    ran = true;
                } catch (Throwable ex) {
                    setException(ex); //保存异常实例
                }
            }
        } finally {
            runner = null;
            s = state;
            if (s >= INTERRUPTING) //任务被中断了,自旋等待中断完成
                handlePossibleCancellationInterrupt(s);
        }
        //返回任务是否正常完成
        return ran && s == NEW;
    }
 
//保存异常对象并修改状态
protected void setException(Throwable t) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            //只有原来的状态是NEW才进入下面的逻辑
            outcome = t;
            UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
            //任务执行完成,唤醒阻塞的线程
            finishCompletion();
        }
    }
 
//保存执行结果并修改状态
protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            //只有原来的状态是NEW才进入下面的逻辑
            outcome = v;
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
             //任务执行完成,唤醒阻塞的线程
            finishCompletion();
        }
    }
 
private void handlePossibleCancellationInterrupt(int s) {
        //正在中断的过程中
        if (s == INTERRUPTING)
            while (state == INTERRUPTING)
                Thread.yield(); //自旋等待中断完成
    }
 
private void finishCompletion() {
        // assert state > COMPLETING;
        for (WaitNode q; (q = waiters) != null;) {
            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                //cas将waiters置为null
                for (;;) {
                    Thread t = q.thread;
                    if (t != null) {
                        //唤醒阻塞的新线程
                        q.thread = null;
                        LockSupport.unpark(t);
                    }
                    //遍历下一个节点
                    WaitNode next = q.next;
                    if (next == null) //遍历结束,终止循环
                        break;
                    q.next = null; // unlink to help gc
                    q = next;
                }
                break; //终止外层循环
            }
        }
        //执行完成的回调方法,默认是空实现,子类可改写此方法
        done();
 
        callable = null;        // to reduce footprint
    }

5、 cancel

cancel方法的参数为true,则会将当前状态由NEW改成INTERRUPTING,如果此任务已经开始执行了,则将正在执行任务的线程标记为已中断,如果该线程响应中断则可能抛出异常,如果不响应中断则继续执行,最后再将状态改成INTERRUPTED;如果方法的参数为false,则将当前状态由NEW改成CANCELLED,如果此任务已经开始执行了则会继续执行。上述两种情形下,状态流转完成后都会唤醒还在阻塞中的等待线程,如果任务已经开始执行并且继续执行,因为状态已经不是NEW了,直接结果不会保存下来。

 
//如果mayInterruptIfRunning为true,则会将正在执行任务的线程标记为已中断,线程有可能继续执行,也有可能响应中断抛出异常
//如果为false,则标记为CANCELLED,如果任务已经开始执行了则会继续执行
//如果未执行,则标记为CANCELLED或者INTERRUPTING都会让这任务不会被执行了
public boolean cancel(boolean mayInterruptIfRunning) {
        //如果state不是NEW 或者cas修改失败,则返回false
        if (!(state == NEW &&
              UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
                  mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
            return false;
        try {    // in case call to interrupt throws exception
            if (mayInterruptIfRunning) {
                try {
                    Thread t = runner;
                    if (t != null)
                        t.interrupt(); //将正在执行任务的线程标记为已中断
                } finally { 
                    //修改状态为已中断 
                    UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
                }
            }
        } finally {
             //唤醒等待的线程
            finishCompletion();
        }
        return true;
    }

三、ExecutorCompletionService

1、定义

ExecutorCompletionService是一个帮助获取多个Future执行结果的工具类,其类继承关系如下:

CompletionService包含的方法如下:

后面会讲解各方法的用途,该类包含的属性如下:

    //执行任务的线程池实现
    private final Executor executor;
    
    //调用其newTaskFor方法
    private final AbstractExecutorService aes;
 
    //已执行完成的Future阻塞队列
    private final BlockingQueue<Future<V>> completionQueue;

其构造方法实现如下:

public ExecutorCompletionService(Executor executor) {
        if (executor == null)
            throw new NullPointerException();
        this.executor = executor;
        //如果executor继承自AbstractExecutorService,则aes为executor,否则为null
        this.aes = (executor instanceof AbstractExecutorService) ?
            (AbstractExecutorService) executor : null;
        //没有指定队列,默认使用基于链表的无固定容量的LinkedBlockingQueue    
        this.completionQueue = new LinkedBlockingQueue<Future<V>>();
    }
 
public ExecutorCompletionService(Executor executor,
                                     BlockingQueue<Future<V>> completionQueue) {
        if (executor == null || completionQueue == null)
            throw new NullPointerException();
        this.executor = executor;
        this.aes = (executor instanceof AbstractExecutorService) ?
            (AbstractExecutorService) executor : null;
        this.completionQueue = completionQueue;
    }

2、submit

submit方法将Callable或者Runnable任务包装成一个RunnableFuture,然后提交到线程池中,返回RunnableFuture实例。

public Future<V> submit(Callable<V> task) {
        if (task == null) throw new NullPointerException();
        //将其包装成RunnableFuture实现类
        RunnableFuture<V> f = newTaskFor(task);
        //提交任务到线程池
        executor.execute(new QueueingFuture(f));
        return f;
    }
 
public Future<V> submit(Runnable task, V result) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<V> f = newTaskFor(task, result);
        executor.execute(new QueueingFuture(f));
        return f;
    }
 
private RunnableFuture<V> newTaskFor(Callable<V> task) {
        if (aes == null)
            return new FutureTask<V>(task); //默认使用FutureTask作为RunnableFuture的实现
        else
            return aes.newTaskFor(task);//如果aes不为null,则使用该类的特定实现
    }
 
private RunnableFuture<V> newTaskFor(Runnable task, V result) {
        if (aes == null)
            return new FutureTask<V>(task, result);
        else
            return aes.newTaskFor(task, result);
    }

其中QueueingFuture是一个内部类,继承自FutureTask,其实现如下:

重点改写了done方法的实现,如果任务已经执行完成,则会将该Future实例添加到阻塞队列中。

3、take / poll 

这三方法就是从已完成的Future阻塞队列中获取并移除Future实例,如果队列为空,take方法会无期限阻塞阻塞,不带时间参数的poll方法不会阻塞返回null,带时间参数的poll方法会阻塞指定的时间,如果超时则返回null,其实现都是直接调用阻塞队列的方法,如下:

总结 

您可能感兴趣的文章:

相关文章