时间:2022-07-22 10:55:00 | 栏目:JAVA代码 | 点击:次
本篇博客重点讲解ThreadPoolExecutor的三个基础设施类AbstractExecutorService、FutureTask和ExecutorCompletionService的实现细节,AbstractExecutorService实现了ExecutorService的大部分接口,子类只需实现excute方法和shutdown相关方法即可;FutureTask是RunnableFuture接口的主要实现,该接口是Runnable和Future的包装类接口,会执行Runnable对应的run方法,调用方可以通过Future接口获取任务的执行状态和结果;ExecutorCompletionService是帮助获取多个RunnableFuture任务的执行结果的工具类,基于FutureTask执行完成时的回调方法done实现的。
ThreadPoolExecutor的类继承关系如下:
其中ExecutorService的子类如下:
右上角带S的表示内部类,我们重点关注ThreadPoolExecutor,ScheduledThreadPoolExecutor和ForkJoinPool三个类的实现,后面两个类会在后面的博客中逐一探讨。
Executor包含的方法如下:
ExecutorService包含的方法如下:
上述接口方法中涉及的Callable接口的定义如下:
该接口也是表示一个执行任务,跟常见的Runnable接口的区别在于call方法有返回值而run方法没有返回值。
Future表示某个任务的执行结果,其定义的方法如下:
其子类比较多,如下:
后面会将涉及的子类逐一探讨的。 AbstractExecutorService基于Executor接口的excute方法实现了大部分的ExecutorService的接口,子类只需要重点实现excute方法和shutdown相关方法即可,下面来分析其具体的实现。
//Runnable接口方法没有返回值,但是可以通过Future判断任务是否执行完成 public Future<?> submit(Runnable task) { if (task == null) throw new NullPointerException(); RunnableFuture<Void> ftask = newTaskFor(task, null); execute(ftask); return ftask; } //因为Runnable的run方法没有返回值,所以如果run方法正常执行完成,其结果就是result public <T> Future<T> submit(Runnable task, T result) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task, result); execute(ftask); return ftask; } public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task); execute(ftask); return ftask; } //都是返回FutureTask protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { return new FutureTask<T>(runnable, value); } protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { return new FutureTask<T>(callable); }
//执行完成tasks中所有的任务,如果有一个抛出异常,则取消掉剩余的任务 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) throws InterruptedException { if (tasks == null) throw new NullPointerException(); ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size()); boolean done = false; try { //遍历tasks中的任务将其转换成RunnableFuture,然后提交到线程池执行 for (Callable<T> t : tasks) { RunnableFuture<T> f = newTaskFor(t); futures.add(f); execute(f); } //遍历Future列表 for (int i = 0, size = futures.size(); i < size; i++) { Future<T> f = futures.get(i); if (!f.isDone()) { //如果未执行完成 try { //等待任务执行完成 f.get(); } catch (CancellationException ignore) { } catch (ExecutionException ignore) { } } } //所有任务都执行完了 done = true; return futures; } finally { if (!done) //出现异常,将所有的任务都取消掉 for (int i = 0, size = futures.size(); i < size; i++) futures.get(i).cancel(true); } } //逻辑同上,不过加了等待时间限制,所有的任务的累计时间不能超过指定值,如果超时直接返回Future列表 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException { if (tasks == null) throw new NullPointerException(); //转换成纳秒 long nanos = unit.toNanos(timeout); ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size()); boolean done = false; try { //转换成Future for (Callable<T> t : tasks) futures.add(newTaskFor(t)); //计算终止时间 final long deadline = System.nanoTime() + nanos; final int size = futures.size(); for (int i = 0; i < size; i++) { execute((Runnable)futures.get(i)); nanos = deadline - System.nanoTime(); //计算剩余时间 if (nanos <= 0L) //如果超时了则直接返回 return futures; } for (int i = 0; i < size; i++) { Future<T> f = futures.get(i); if (!f.isDone()) { //任务未执行 if (nanos <= 0L) return futures; //等待超时 try { //等待任务执行完成 f.get(nanos, TimeUnit.NANOSECONDS); } catch (CancellationException ignore) { } catch (ExecutionException ignore) { } catch (TimeoutException toe) { return futures; } nanos = deadline - System.nanoTime(); } } done = true; return futures; } finally { if (!done) //出现异常,取消掉剩余未执行的任务 for (int i = 0, size = futures.size(); i < size; i++) futures.get(i).cancel(true); } }
//多个任务只要有一个执行成功就返回,并把剩余的已提交未执行的任务给取消掉 public <T> T invokeAny(Collection<? extends Callable<T>> tasks) throws InterruptedException, ExecutionException { try { return doInvokeAny(tasks, false, 0); } catch (TimeoutException cannotHappen) { assert false; return null; } } //多个任务只要有一个执行成功就返回,并把剩余的已提交未执行的任务给取消掉 //如果指定时间内没有执行成功的,则抛出TimeoutException 异常 public <T> T invokeAny(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { return doInvokeAny(tasks, true, unit.toNanos(timeout)); } private <T> T doInvokeAny(Collection<? extends Callable<T>> tasks, boolean timed, long nanos) throws InterruptedException, ExecutionException, TimeoutException { //参数校验 if (tasks == null) throw new NullPointerException(); int ntasks = tasks.size(); if (ntasks == 0) throw new IllegalArgumentException(); ArrayList<Future<T>> futures = new ArrayList<Future<T>>(ntasks); ExecutorCompletionService<T> ecs = new ExecutorCompletionService<T>(this); try { ExecutionException ee = null; final long deadline = timed ? System.nanoTime() + nanos : 0L; Iterator<? extends Callable<T>> it = tasks.iterator(); //提交一个任务 futures.add(ecs.submit(it.next())); --ntasks; int active = 1; for (;;) { //获取最新的已完成任务 Future<T> f = ecs.poll(); if (f == null) { //没有执行完的 if (ntasks > 0) { --ntasks; //继续添加下一个任务 futures.add(ecs.submit(it.next())); ++active; } else if (active == 0) //所有任务都执行失败了,没有执行成功的 break; else if (timed) { //等待超时 f = ecs.poll(nanos, TimeUnit.NANOSECONDS); if (f == null) throw new TimeoutException(); //计算剩余等待时间 nanos = deadline - System.nanoTime(); } else //所有任务都提交了,阻塞等待某个任务执行完成 f = ecs.take(); } if (f != null) { --active; try { //某个任务已执行完成,如果抛出异常则执行下一个任务 return f.get(); } catch (ExecutionException eex) { ee = eex; } catch (RuntimeException rex) { ee = new ExecutionException(rex); } } } //for循环终止 //所有任务都执行失败了 if (ee == null) ee = new ExecutionException(); throw ee; } finally { //返回前,将未执行完成的任务都取消掉 for (int i = 0, size = futures.size(); i < size; i++) futures.get(i).cancel(true); } }
FutureTask的类继承关系如下:
RunnableFuture接口没有新增方法,将Runnable的run方法由public改成包级访问了,如下:
该类包含的实例属性如下:
/** 执行的任务*/ private Callable<V> callable; /** 任务执行的结果或者执行过程中抛出的异常 */ private Object outcome; // non-volatile, protected by state reads/writes /** 执行任务的线程 */ private volatile Thread runner; /** 等待线程的链表*/ private volatile WaitNode waiters; //状态 private volatile int state;
其中WaitNode是一个简单的内部类,其定义如下:
该类包含的静态属性都是字段偏移量,通过static代码块初始化,如下:
FutureTask定义了多个表示状态的常量,如下:
//初始状态 private static final int NEW = 0; //是一个很短暂的中间状态,表示任务已执行完成,保存完执行结果后就流转成NORMAL或者EXCEPTIONAL private static final int COMPLETING = 1; //正常执行完成 private static final int NORMAL = 2; //异常终止 private static final int EXCEPTIONAL = 3; //任务被取消了 private static final int CANCELLED = 4; //是一个很短暂的中间状态,调用interrupt方法后,会将状态流转成INTERRUPTED private static final int INTERRUPTING = 5; //任务执行已中断 private static final int INTERRUPTED = 6;
可能的状态流转如下图:
public FutureTask(Callable<V> callable) { if (callable == null) throw new NullPointerException(); this.callable = callable; this.state = NEW; //初始状态是NEW } public FutureTask(Runnable runnable, V result) { //将Runnable适配成Callable this.callable = Executors.callable(runnable, result); this.state = NEW; // ensure visibility of callable } //Executors方法 public static <T> Callable<T> callable(Runnable task, T result) { if (task == null) throw new NullPointerException(); return new RunnableAdapter<T>(task, result); }
其中RunnableAdapter是Executors的一个静态内部类,其实现如下:
get方法用于阻塞当前线程直到任务执行完成,如果阻塞的过程中被中断则抛出异常InterruptedException,可以限制阻塞的时间,如果等待超时还是未完成则抛出异常TimeoutException。
//阻塞当前线程等待任务执行完成 public V get() throws InterruptedException, ExecutionException { int s = state; if (s <= COMPLETING) //如果未完成 s = awaitDone(false, 0L); return report(s); } //同上,可以限制等待的时间 public V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { if (unit == null) throw new NullPointerException(); int s = state; if (s <= COMPLETING && //阻塞当前线程,如果返回值还是未完成说明是等待超时了,则抛出异常 (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING) throw new TimeoutException(); return report(s); } //timed为true表示等待指定的时间,否则是无期限等待 //该方法返回退出此方法时的状态 private int awaitDone(boolean timed, long nanos) throws InterruptedException { //计算等待的终止时间 final long deadline = timed ? System.nanoTime() + nanos : 0L; WaitNode q = null; boolean queued = false; for (;;) { if (Thread.interrupted()) { //如果当前线程被中断了,则从等待链表中移除,并抛出异常 removeWaiter(q); throw new InterruptedException(); } int s = state; if (s > COMPLETING) { //如果任务已执行完 if (q != null) q.thread = null; return s; } else if (s == COMPLETING) //正在状态流转的过程中,让出当前CPU时间片 Thread.yield(); //未开始执行 else if (q == null) q = new WaitNode(); else if (!queued) //修改waiters属性,插入到链表头 queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q); //已插入到链表中 else if (timed) { nanos = deadline - System.nanoTime(); if (nanos <= 0L) { //等待超时,从链表中移除 removeWaiter(q); return state; } //让当前线程休眠 LockSupport.parkNanos(this, nanos); } else //让当前线程休眠 LockSupport.park(this); } } private void removeWaiter(WaitNode node) { if (node != null) { node.thread = null;//将thread置为null retry: for (;;) { // restart on removeWaiter race for (WaitNode pred = null, q = waiters, s; q != null; q = s) { s = q.next; if (q.thread != null) pred = q; //q.thread为null,需要被移除 else if (pred != null) { pred.next = s; //将q从链表移除 if (pred.thread == null) //如果为null,则从头开始遍历 continue retry; } //q.thread为null,pred为null,之前没有有效节点,修改waiters,修改失败重试 else if (!UNSAFE.compareAndSwapObject(this, waitersOffset, q, s)) continue retry; } break; } } } //awaitDone正常返回后调用此方法,此时状态应该是COMPLETING之后了 private V report(int s) throws ExecutionException { Object x = outcome; if (s == NORMAL) //如果是正常结束 return (V)x; if (s >= CANCELLED) //如果被取消了 throw new CancellationException(); throw new ExecutionException((Throwable)x); //如果出现异常了 }
run方法是有线程池调用的,会执行Callable任务,保存执行的结果,如果出现异常则保存异常对象,并完成状态流转,最后将等待任务完成的阻塞中的线程唤醒。runAndReset和run类似,区别在于runAndReset正常执行完成后不会保存执行的结果,不会改变状态,状态还是NEW,如果是正常执行则返回true,该方法是子类使用的,其调用链如下:
这两方法的实现如下:
//由线程池中的某个线程调用此方法 public void run() { //如果不等于NEW,说明其他某个线程正在执行任务 //如果等于NEW,则cas修改runner属性,修改失败说明其他某个线程也准备执行这个任务 if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) return; //cas成功表示这个任务由当前线程抢占成功 try { Callable<V> c = callable; if (c != null && state == NEW) { V result; boolean ran; try { //执行任务 result = c.call(); ran = true; } catch (Throwable ex) { //出现异常 result = null; ran = false; setException(ex); //保存异常对象 } if (ran) //执行成功保存结果 set(result); } } finally { //如果任务被cancel了,则上述setException和set方法因为状态不是NEW了会直接返回 runner = null; int s = state; if (s >= INTERRUPTING) //如果被中断,自旋等待中断完成 handlePossibleCancellationInterrupt(s); } } //跟run方法相比区别就是正常执行完成不会保存结果,不会流转状态 protected boolean runAndReset() { //如果state不是NEW或者cas修改runner失败 if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) return false; boolean ran = false; int s = state; try { Callable<V> c = callable; if (c != null && s == NEW) { try { //执行任务,但是不保存结果,状态就不会从NEW流转成NORMAL c.call(); // don't set result ran = true; } catch (Throwable ex) { setException(ex); //保存异常实例 } } } finally { runner = null; s = state; if (s >= INTERRUPTING) //任务被中断了,自旋等待中断完成 handlePossibleCancellationInterrupt(s); } //返回任务是否正常完成 return ran && s == NEW; } //保存异常对象并修改状态 protected void setException(Throwable t) { if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { //只有原来的状态是NEW才进入下面的逻辑 outcome = t; UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state //任务执行完成,唤醒阻塞的线程 finishCompletion(); } } //保存执行结果并修改状态 protected void set(V v) { if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { //只有原来的状态是NEW才进入下面的逻辑 outcome = v; UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state //任务执行完成,唤醒阻塞的线程 finishCompletion(); } } private void handlePossibleCancellationInterrupt(int s) { //正在中断的过程中 if (s == INTERRUPTING) while (state == INTERRUPTING) Thread.yield(); //自旋等待中断完成 } private void finishCompletion() { // assert state > COMPLETING; for (WaitNode q; (q = waiters) != null;) { if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) { //cas将waiters置为null for (;;) { Thread t = q.thread; if (t != null) { //唤醒阻塞的新线程 q.thread = null; LockSupport.unpark(t); } //遍历下一个节点 WaitNode next = q.next; if (next == null) //遍历结束,终止循环 break; q.next = null; // unlink to help gc q = next; } break; //终止外层循环 } } //执行完成的回调方法,默认是空实现,子类可改写此方法 done(); callable = null; // to reduce footprint }
cancel方法的参数为true,则会将当前状态由NEW改成INTERRUPTING,如果此任务已经开始执行了,则将正在执行任务的线程标记为已中断,如果该线程响应中断则可能抛出异常,如果不响应中断则继续执行,最后再将状态改成INTERRUPTED;如果方法的参数为false,则将当前状态由NEW改成CANCELLED,如果此任务已经开始执行了则会继续执行。上述两种情形下,状态流转完成后都会唤醒还在阻塞中的等待线程,如果任务已经开始执行并且继续执行,因为状态已经不是NEW了,直接结果不会保存下来。
//如果mayInterruptIfRunning为true,则会将正在执行任务的线程标记为已中断,线程有可能继续执行,也有可能响应中断抛出异常 //如果为false,则标记为CANCELLED,如果任务已经开始执行了则会继续执行 //如果未执行,则标记为CANCELLED或者INTERRUPTING都会让这任务不会被执行了 public boolean cancel(boolean mayInterruptIfRunning) { //如果state不是NEW 或者cas修改失败,则返回false if (!(state == NEW && UNSAFE.compareAndSwapInt(this, stateOffset, NEW, mayInterruptIfRunning ? INTERRUPTING : CANCELLED))) return false; try { // in case call to interrupt throws exception if (mayInterruptIfRunning) { try { Thread t = runner; if (t != null) t.interrupt(); //将正在执行任务的线程标记为已中断 } finally { //修改状态为已中断 UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); } } } finally { //唤醒等待的线程 finishCompletion(); } return true; }
ExecutorCompletionService是一个帮助获取多个Future执行结果的工具类,其类继承关系如下:
CompletionService包含的方法如下:
后面会讲解各方法的用途,该类包含的属性如下:
//执行任务的线程池实现 private final Executor executor; //调用其newTaskFor方法 private final AbstractExecutorService aes; //已执行完成的Future阻塞队列 private final BlockingQueue<Future<V>> completionQueue;
其构造方法实现如下:
public ExecutorCompletionService(Executor executor) { if (executor == null) throw new NullPointerException(); this.executor = executor; //如果executor继承自AbstractExecutorService,则aes为executor,否则为null this.aes = (executor instanceof AbstractExecutorService) ? (AbstractExecutorService) executor : null; //没有指定队列,默认使用基于链表的无固定容量的LinkedBlockingQueue this.completionQueue = new LinkedBlockingQueue<Future<V>>(); } public ExecutorCompletionService(Executor executor, BlockingQueue<Future<V>> completionQueue) { if (executor == null || completionQueue == null) throw new NullPointerException(); this.executor = executor; this.aes = (executor instanceof AbstractExecutorService) ? (AbstractExecutorService) executor : null; this.completionQueue = completionQueue; }
submit方法将Callable或者Runnable任务包装成一个RunnableFuture,然后提交到线程池中,返回RunnableFuture实例。
public Future<V> submit(Callable<V> task) { if (task == null) throw new NullPointerException(); //将其包装成RunnableFuture实现类 RunnableFuture<V> f = newTaskFor(task); //提交任务到线程池 executor.execute(new QueueingFuture(f)); return f; } public Future<V> submit(Runnable task, V result) { if (task == null) throw new NullPointerException(); RunnableFuture<V> f = newTaskFor(task, result); executor.execute(new QueueingFuture(f)); return f; } private RunnableFuture<V> newTaskFor(Callable<V> task) { if (aes == null) return new FutureTask<V>(task); //默认使用FutureTask作为RunnableFuture的实现 else return aes.newTaskFor(task);//如果aes不为null,则使用该类的特定实现 } private RunnableFuture<V> newTaskFor(Runnable task, V result) { if (aes == null) return new FutureTask<V>(task, result); else return aes.newTaskFor(task, result); }
其中QueueingFuture是一个内部类,继承自FutureTask,其实现如下:
重点改写了done方法的实现,如果任务已经执行完成,则会将该Future实例添加到阻塞队列中。
这三方法就是从已完成的Future阻塞队列中获取并移除Future实例,如果队列为空,take方法会无期限阻塞阻塞,不带时间参数的poll方法不会阻塞返回null,带时间参数的poll方法会阻塞指定的时间,如果超时则返回null,其实现都是直接调用阻塞队列的方法,如下: