时间:2022-07-08 10:27:10 | 栏目:JAVA代码 | 点击:次
Sharding-Proxy是一个分布式数据库中间件,定位为透明化的数据库代理端。作为开发人员可以完全把它当成数据库,而它具体的分片规则在Sharding-Proxy中配置。它的整体架构图如下:
在架构图中,中间的蓝色方块就是我们的中间件Sharding-Proxy,下面连接的是数据库,我们可以配置每一个数据库的分片,还可以配置数据库的读写分离,影子库等等。上方则是我们的业务代码,他们统一连接Sharding-Proxy,就像直接连接数据库一样,而具体的数据插入哪一个数据库,则由Sharding-Proxy中的分片规则决定。再看看右侧,右侧是一些数据库的工具,比如:MySQL CLI,这是MySQL的命令行;Workbench是MySQL自己出的一个管理工具;还可以连接其他的工具,比如:Navicat,SQLYog等。最后再来看看左侧,是一个注册中心,目前支持最好的是Zookeeper,在注册中心中,我们可以统一配置分片规则,读写数据源等,而且是实时生效的,在管理多个Sharding-Proxy时,非常的方便。而官方也给我们提供了界面化的工具——ShardingSphere-UI,使用起来非常的方便。
我们可以在Sharding-Proxy官网上找的下载目录,再找到Sharding-Proxy的下载链接,下载最新版本的二进制包。然后把二进制包(tar.gz)上传到服务器的目录中,这个目录可以自定义,/opt
或者/usr/local
都可以,然后解压,命令如下:
tar -zxvf apache-shardingsphere-4.1.1-sharding-proxy-bin.tar.gz
解压后,进入到sharding-proxy的conf目录,这个目录sharding-proxy的配置目录,我们所有的数据源、分片规则、读写分离等都在此目录下配置。
[root@centOS-1 conf]# ll 总用量 28 -rw-r--r--. 1 root root 3019 6月 4 15:24 config-encrypt.yaml -rw-r--r--. 1 root root 3633 7月 7 13:51 config-master_slave.yaml -rw-r--r--. 1 root root 2938 6月 4 15:24 config-shadow.yaml -rw-r--r--. 1 root root 5463 7月 7 14:08 config-sharding.yaml -rw-r--r--. 1 root root 1322 6月 4 15:24 logback.xml -rw-r--r--. 1 root root 2171 7月 7 15:19 server.yaml
这些配置我们在后面会展开讲。Sharding-Proxy默认支持的数据库是PostgreSQL,而我们大多数都是使用的MySQL,在这里我们的数据库使用的是MySQL,我们要将mysql-connector-java.jar这个jar包放入lib目录,这里推荐使用5.x版本的jar包,如果使用8.x可能会有一些位置的错误。
最后,我们执行bin目录下的start.sh就可以运行了。
./bin/start.sh
Sharding-Proxy默认的启动端口是3307,我们在连接的时候要格外注意一下。
下面我们看看server.yaml文件中,都具体配置哪些内容,我们用vim打开文件,
vim server.yaml
文件的内容如下:
######################################################################################### # # If you want to configure orchestration, authorization and proxy properties, please refer to this file. # ######################################################################################### # #orchestration: # orchestration_ds: # orchestrationType: registry_center,config_center # instanceType: zookeeper # serverLists: 192.168.73.131:2181 # namespace: sharding-proxy # props: # overwrite: false # retryIntervalMilliseconds: 500 # timeToLiveSeconds: 60 # maxRetries: 3 # operationTimeoutMilliseconds: 500 authentication: users: root: password: root sharding: password: sharding authorizedSchemas: sharding_db
这个文件是Sharding-Proxy的核心的配置,所有的分片规则都在这个文件中配置,让我们一起来看看吧,
schemaName: sharding_db dataSources: ds_1: url: jdbc:mysql://192.168.73.132:3306/shard_order?serverTimezone=Asia/Shanghai&useSSL=false username: imooc password: Imooc@123456 connectionTimeoutMilliseconds: 30000 idleTimeoutMilliseconds: 60000 maxLifetimeMilliseconds: 1800000 maxPoolSize: 50 master_ds: url: jdbc:mysql://192.168.73.131:3306/sharding_order?serverTimezone=Asia/Shanghai&useSSL=false username: imooc password: Imooc@123456 connectionTimeoutMilliseconds: 30000 idleTimeoutMilliseconds: 60000 maxLifetimeMilliseconds: 1800000 maxPoolSize: 50 slave_ds_0: url: jdbc:mysql://192.168.73.130:3306/sharding_order?serverTimezone=Asia/Shanghai&useSSL=false username: imooc password: Imooc@123456 connectionTimeoutMilliseconds: 30000 idleTimeoutMilliseconds: 60000 maxLifetimeMilliseconds: 1800000 maxPoolSize: 50
接下来再看看具体分片的配置,
shardingRule: masterSlaveRules: ds_0: masterDataSourceName: master_ds slaveDataSourceNames: - slave_ds_0 tables: t_order: actualDataNodes: ds_${0..1}.t_order_${1..2} tableStrategy: inline: shardingColumn: order_id algorithmExpression: t_order_${order_id % 2 + 1} keyGenerator: type: SNOWFLAKE column: order_id t_order_item: actualDataNodes: ds_${0..1}.t_order_item_${1..2} tableStrategy: inline: shardingColumn: order_id algorithmExpression: t_order_item_${order_id % 2 + 1} keyGenerator: type: SNOWFLAKE column: id defaultDatabaseStrategy: inline: shardingColumn: user_id algorithmExpression: ds_${user_id % 2} defaultTableStrategy: none: defaultDataSourceName: ds_0
ds_${user_id % 2}
,当user_id为偶数时,数据源为ds_0,也就是前面配置的读写分离数据源;而当user_id为奇数时,数据源为ds_1。如果我们的表的分片规则中,没有配置数据源的分片规则,将使用这个默认数据源的分片策略。整个的分片策略就配置完了,决定每条数据的具体分片由两个字段决定,user_id决定数据分配到哪一个数据源中,order_id决定数据分配到哪一个表中。这就是分片+读写分离的配置,如果要进行更详细的配置,可以参考官方文档,这里不赘述了。
如果我们只配置数据源的读写分离,而不进行分片配置,就需要参照这个配置文件进行配置了,虽然分片+读写分离的配置已经有了读写分离的配置,但是他俩之间还是有一些细微的区别的,我们来看看这个文件中的内容吧,
schemaName: master_slave_db dataSources: master_ds: url: jdbc:mysql://192.168.73.131:3306/sharding_order?serverTimezone=Asia/Shanghai&useSSL=false username: imooc password: Imooc@123456 connectionTimeoutMilliseconds: 30000 idleTimeoutMilliseconds: 60000 maxLifetimeMilliseconds: 1800000 maxPoolSize: 50 slave_ds: url: jdbc:mysql://192.168.73.130:3306/sharding_order?serverTimezone=Asia/Shanghai&useSSL=false username: imooc password: Imooc@123456 connectionTimeoutMilliseconds: 30000 idleTimeoutMilliseconds: 60000 maxLifetimeMilliseconds: 1800000 maxPoolSize: 50 slave_ds_1: url: jdbc:mysql://127.0.0.1:3306/demo_ds_slave_1?serverTimezone=UTC&useSSL=false username: root password: connectionTimeoutMilliseconds: 30000 idleTimeoutMilliseconds: 60000 maxLifetimeMilliseconds: 1800000 maxPoolSize: 50 masterSlaveRule: name: ds_0 masterDataSourceName: master_ds slaveDataSourceNames: - slave_ds - slave_ds_1
这里只是单纯的配置主从读写分离数据源,如果要配置分片+读写分离,请参照前面的配置。
在现在微服务盛行的情况下,系统被切分的很细,这对于测试,尤其是压测是非常难的,如果在测试环境部署一套和生产一模一样的环境,是非常浪费资源的。而如果只部署一两个服务,又不能进行全链路的整体压测。而我们的解决方案是在生产环境直接进行压测,得出的结果也是真实有效的。那么这些压测的数据怎么办,如果不做特殊的处理,就和生产的真实数据混在一起了。
这里我们就需要配置影子数据库了,所有压测数据都会有一个特殊的标识,sharding-proxy根据这个特殊的标识,将压测的数据分配到影子库中,和生产的真实数据隔离开,我们看看具体怎么配置
schemaName: sharding_db dataSources: ds: url: jdbc:mysql://127.0.0.1:3306/demo_ds_0?serverTimezone=UTC&useSSL=false username: root password: connectionTimeoutMilliseconds: 30000 idleTimeoutMilliseconds: 60000 maxLifetimeMilliseconds: 1800000 maxPoolSize: 50 shadow_ds: url: jdbc:mysql://127.0.0.1:3306/demo_ds_1?serverTimezone=UTC&useSSL=false username: root password: connectionTimeoutMilliseconds: 30000 idleTimeoutMilliseconds: 60000 maxLifetimeMilliseconds: 1800000 maxPoolSize: 50 shadowRule: column: shadow shadowMappings: ds: shadow_ds
影子库的配置在我们压测中还是十分有用的,将测试数据和生产数据隔离开,不会影响到生产数据。
最后我们再看看数据加密的配置,一些用户的信息是不希望在数据库中以明文存在的,比如:用户的身份证号、银行卡号。但是,在使用的时候,我们还要把它解密回来。当然,我们可以在程序中,针对这些字段进行加解密,这里呢,我们看看Sharding-Proxy为我们提供的数据加密配置。我们看一下配置文件,
schemaName: encrypt_db dataSource: url: jdbc:mysql://127.0.0.1:3306/demo_ds?serverTimezone=UTC&useSSL=false username: root password: connectionTimeoutMilliseconds: 30000 idleTimeoutMilliseconds: 60000 maxLifetimeMilliseconds: 1800000 maxPoolSize: 50 encryptRule: encryptors: encryptor_aes: type: aes props: aes.key.value: 123456abc tables: t_card_no: columns: card_no: cipherColumn: card_no_cipher encryptor: encryptor_aes
数据加密在实际的应用中还是比较多的。