时间:2022-07-03 09:31:47 | 栏目:JAVA代码 | 点击:次
经过前三个教程,我们可以知道了OpenCV的基本使用了。
今天,我们就要讲OpenCV中认出,这是一个人脸是怎么做的。
OpenCV用的是detectMultiScale来认出这是一个脸的。记得,这只是认出这是一个脸,而不是这个脸是谁。
这个脸是谁我们会逐步展开,前面勿求夯实基础。
detectMultiScale需要两个参数(Mat src, MatOfRect objDetections);
比如说下面这个图片里,一共有5个脸,我们把脸一个个识别出来并在脸上用方框把它们标记出来。
然后用我们前面教程中提到的ImageViewer类来显示带有“标识”的人脸。
再上一遍
package org.mk.opencv; import org.mk.opencv.util.OpenCVUtil; import org.opencv.core.Mat; import javax.swing.*; import java.awt.*; public class ImageViewer { private JLabel imageView; private Mat image; private String windowName; private JFrame frame = null; public ImageViewer() { frame = createJFrame(windowName, 800, 600); } public ImageViewer(Mat image) { this.image = image; } /** * @param image 要显示的mat * @param windowName 窗口标题 */ public ImageViewer(Mat image, String windowName) { frame = createJFrame(windowName, 1024, 768); this.image = image; this.windowName = windowName; } public void setTitle(String windowName) { this.windowName = windowName; } public void setImage(Mat image) { this.image = image; } /** * 图片显示 */ public void imshow() { setSystemLookAndFeel(); frame.pack(); frame.setLocationRelativeTo(null); frame.setVisible(true); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);// 用户点击窗口关闭 if (image != null) { Image loadedImage = OpenCVUtil.matToImage(image); // JFrame frame = createJFrame(windowName, image.width(), image.height()); imageView.setIcon(new ImageIcon(loadedImage)); frame.pack(); // frame.setLocationRelativeTo(null); // frame.setVisible(true); // frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);// 用户点击窗口关闭 } } private void setSystemLookAndFeel() { try { UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName()); } catch (ClassNotFoundException e) { e.printStackTrace(); } catch (InstantiationException e) { e.printStackTrace(); } catch (IllegalAccessException e) { e.printStackTrace(); } catch (UnsupportedLookAndFeelException e) { e.printStackTrace(); } } private JFrame createJFrame(String windowName, int width, int height) { JFrame frame = new JFrame(windowName); imageView = new JLabel(); final JScrollPane imageScrollPane = new JScrollPane(imageView); imageScrollPane.setPreferredSize(new Dimension(width, height)); frame.add(imageScrollPane, BorderLayout.CENTER); frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE); return frame; } }
这个是主类。
老三样:
1.加载opencv_java343.dll;
2.加载人脸分拣器;
3.创建Mat对象;
然后我们开始把脸识别出来:
1.使用detectMultiScale把传入的Mat对象中含有脸的那些全部识别出来;
2.识别出来后我们可以使用for (Rect rect : objDetections.toArray())把所有的脸枚举出来;
3.使用Imgproc.rectangle在每个识别出来的脸上用“绿”色把它们一个个框出来;
4.使用ImageViewer的.imgShow显示标识出来的脸;
package org.mk.opencv; import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.MatOfRect; import org.opencv.core.Point; import org.opencv.core.Rect; import org.opencv.core.Scalar; import org.opencv.imgcodecs.Imgcodecs; import org.opencv.imgproc.Imgproc; import org.opencv.objdetect.CascadeClassifier; public class DetectFace { public static void main(String[] args) { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); //Mat src = Imgcodecs.imread("/Users/chrishu123126.com/opt/img/detect-face-4.jpg"); Mat src = Imgcodecs.imread("D:\\opencv-demo\\green-arrow.jpg"); if (src.empty()) { System.out.println("图片路径不正确"); return; } Mat dst = dobj(src); ImageViewer imageViewer = new ImageViewer(dst, "识脸"); imageViewer.imshow(); } private static Mat dobj(Mat src) { Mat dst = src.clone(); CascadeClassifier objDetector = new CascadeClassifier( "D:\\opencvinstall\\build\\install\\etc\\lbpcascades\\lbpcascade_frontalface.xml"); MatOfRect objDetections = new MatOfRect(); objDetector.detectMultiScale(dst, objDetections); if (objDetections.toArray().length <= 0) { return src; } for (Rect rect : objDetections.toArray()) { Imgproc.rectangle(dst, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.width), new Scalar(0, 255, 0), 1); //new Scalar(0, 255, 0), 1)绿 //new Scalar(0, 0, 255), 1)红 //new Scalar(255, 0, 0), 1)蓝 } return dst; } }
运行效果如下
我们现在把识别出来的5张脸存成5个jpg图片。
制作一个写盘函数,很简单。
private static void outputFace(String outputDir, Mat face) { long millSecs = System.currentTimeMillis(); int temp = (int) (Math.random() * 10000); StringBuffer outputImgName = new StringBuffer(); outputImgName.append(outputDir).append("/").append(millSecs).append(temp).append(".jpg"); if (face != null) { Imgcodecs.imwrite(outputImgName.toString(), face); logger.info(">>>>>>write image into->" + outputDir); } }
然后我们在我们的原来的代码中加入这个函数
package org.mk.opencv; import org.apache.log4j.Logger; import org.mk.opencv.face.FaceRecogFromFiles; import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.MatOfRect; import org.opencv.core.Point; import org.opencv.core.Rect; import org.opencv.core.Scalar; import org.opencv.imgcodecs.Imgcodecs; import org.opencv.imgproc.Imgproc; import org.opencv.objdetect.CascadeClassifier; public class DetectFace { private static Logger logger = Logger.getLogger(DetectFace.class); private final static String faceOutPutDir = "d://opencv-demo/face"; public static void main(String[] args) { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); // Mat src = // Imgcodecs.imread("/Users/chrishu123126.com/opt/img/detect-face-4.jpg"); Mat src = Imgcodecs.imread("D:\\opencv-demo\\green-arrow.jpg"); if (src.empty()) { System.out.println("图片路径不正确"); return; } Mat dst = dobj(src); ImageViewer imageViewer = new ImageViewer(dst, "识脸"); imageViewer.imshow(); } private static Mat dobj(Mat src) { Mat dst = src.clone(); CascadeClassifier objDetector = new CascadeClassifier( "D:\\opencvinstall\\build\\install\\etc\\lbpcascades\\lbpcascade_frontalface.xml"); MatOfRect objDetections = new MatOfRect(); objDetector.detectMultiScale(dst, objDetections); if (objDetections.toArray().length <= 0) { return src; } for (Rect rect : objDetections.toArray()) { Imgproc.rectangle(dst, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.width), new Scalar(0, 255, 0), 1); // new Scalar(0, 255, 0), 1)绿 //new Scalar(0, 0, 255), 1)红 //new // Scalar(255, 0, 0), 1)蓝 outputFace(faceOutPutDir, src.submat(rect)); } return dst; } private static void outputFace(String outputDir, Mat face) { long millSecs = System.currentTimeMillis(); int temp = (int) (Math.random() * 10000); StringBuffer outputImgName = new StringBuffer(); outputImgName.append(outputDir).append("/").append(millSecs).append(temp).append(".jpg"); if (face != null) { Imgcodecs.imwrite(outputImgName.toString(), face); logger.info(">>>>>>write image into->" + outputDir); } } }
运行DetectFace.java,我们可以在D:\opencv-demo\face目录中得到5个写出的人脸的图片。