当前位置:主页 > 软件编程 > JAVA代码 >

Java+OpenCV实现图片中的人脸识别

时间:2022-07-03 09:31:47 | 栏目:JAVA代码 | 点击:

经过前三个教程,我们可以知道了OpenCV的基本使用了。

今天,我们就要讲OpenCV中认出,这是一个人脸是怎么做的。

MatOfRect.detectMultiScale函数

OpenCV用的是detectMultiScale来认出这是一个脸的。记得,这只是认出这是一个脸,而不是这个脸是谁。

这个脸是谁我们会逐步展开,前面勿求夯实基础。

detectMultiScale需要两个参数(Mat src, MatOfRect objDetections);

比如说下面这个图片里,一共有5个脸,我们把脸一个个识别出来并在脸上用方框把它们标记出来。

然后用我们前面教程中提到的ImageViewer类来显示带有“标识”的人脸。

实现代码

ImageViewer.java

再上一遍

package org.mk.opencv;
 
import org.mk.opencv.util.OpenCVUtil;
import org.opencv.core.Mat;
import javax.swing.*;
import java.awt.*;
 
public class ImageViewer {
    private JLabel imageView;
    private Mat image;
    private String windowName;
 
    private JFrame frame = null;
 
    public ImageViewer() {
        frame = createJFrame(windowName, 800, 600);
    }
 
    public ImageViewer(Mat image) {
        this.image = image;
    }
 
    /**
     * @param image      要显示的mat
     * @param windowName 窗口标题
     */
    public ImageViewer(Mat image, String windowName) {
        frame = createJFrame(windowName, 1024, 768);
        this.image = image;
        this.windowName = windowName;
    }
 
    public void setTitle(String windowName) {
        this.windowName = windowName;
    }
 
    public void setImage(Mat image) {
        this.image = image;
    }
 
    /**
     * 图片显示
     */
    public void imshow() {
        setSystemLookAndFeel();
        frame.pack();
        frame.setLocationRelativeTo(null);
        frame.setVisible(true);
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);// 用户点击窗口关闭
        if (image != null) {
            Image loadedImage = OpenCVUtil.matToImage(image);
            // JFrame frame = createJFrame(windowName, image.width(), image.height());
            imageView.setIcon(new ImageIcon(loadedImage));
            frame.pack();
            // frame.setLocationRelativeTo(null);
            // frame.setVisible(true);
            // frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);// 用户点击窗口关闭
        }
    }
 
    private void setSystemLookAndFeel() {
        try {
            UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        } catch (InstantiationException e) {
            e.printStackTrace();
        } catch (IllegalAccessException e) {
            e.printStackTrace();
        } catch (UnsupportedLookAndFeelException e) {
            e.printStackTrace();
        }
    }
 
    private JFrame createJFrame(String windowName, int width, int height) {
        JFrame frame = new JFrame(windowName);
        imageView = new JLabel();
        final JScrollPane imageScrollPane = new JScrollPane(imageView);
        imageScrollPane.setPreferredSize(new Dimension(width, height));
        frame.add(imageScrollPane, BorderLayout.CENTER);
        frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
        return frame;
    }
 
}

DetectFace.java

这个是主类。

老三样:

1.加载opencv_java343.dll;

2.加载人脸分拣器;

3.创建Mat对象;

然后我们开始把脸识别出来:

1.使用detectMultiScale把传入的Mat对象中含有脸的那些全部识别出来;

2.识别出来后我们可以使用for (Rect rect : objDetections.toArray())把所有的脸枚举出来;

3.使用Imgproc.rectangle在每个识别出来的脸上用“绿”色把它们一个个框出来;

4.使用ImageViewer的.imgShow显示标识出来的脸;

package org.mk.opencv;
 
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
 
public class DetectFace {
    public static void main(String[] args) {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        //Mat src = Imgcodecs.imread("/Users/chrishu123126.com/opt/img/detect-face-4.jpg");
        Mat src = Imgcodecs.imread("D:\\opencv-demo\\green-arrow.jpg");
        if (src.empty()) {
            System.out.println("图片路径不正确");
            return;
        }
        Mat dst = dobj(src);
        ImageViewer imageViewer = new ImageViewer(dst, "识脸");
        imageViewer.imshow();
    }
 
    private static Mat dobj(Mat src) {
        Mat dst = src.clone();
 
        CascadeClassifier objDetector = new CascadeClassifier(
                "D:\\opencvinstall\\build\\install\\etc\\lbpcascades\\lbpcascade_frontalface.xml");
 
        MatOfRect objDetections = new MatOfRect();
 
        objDetector.detectMultiScale(dst, objDetections);
 
        if (objDetections.toArray().length <= 0) {
            return src;
        }
 
        for (Rect rect : objDetections.toArray()) {
            Imgproc.rectangle(dst, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.width),
                    new Scalar(0, 255, 0), 1); //new Scalar(0, 255, 0), 1)绿 //new Scalar(0, 0, 255), 1)红 //new Scalar(255, 0, 0), 1)蓝
        }
        return dst;
    }
}

运行

运行效果如下

把识别出来的脸存成文件

我们现在把识别出来的5张脸存成5个jpg图片。

制作一个写盘函数,很简单。

    private static void outputFace(String outputDir, Mat face) {
        long millSecs = System.currentTimeMillis();
        int temp = (int) (Math.random() * 10000);
        StringBuffer outputImgName = new StringBuffer();
        outputImgName.append(outputDir).append("/").append(millSecs).append(temp).append(".jpg");
        if (face != null) {
            Imgcodecs.imwrite(outputImgName.toString(), face);
            logger.info(">>>>>>write image into->" + outputDir);
        }
    }

然后我们在我们的原来的代码中加入这个函数

package org.mk.opencv;
 
import org.apache.log4j.Logger;
import org.mk.opencv.face.FaceRecogFromFiles;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
 
public class DetectFace {
 
    private static Logger logger = Logger.getLogger(DetectFace.class);
    private final static String faceOutPutDir = "d://opencv-demo/face";
 
    public static void main(String[] args) {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
 
        // Mat src =
        // Imgcodecs.imread("/Users/chrishu123126.com/opt/img/detect-face-4.jpg");
        Mat src = Imgcodecs.imread("D:\\opencv-demo\\green-arrow.jpg");
        if (src.empty()) {
            System.out.println("图片路径不正确");
            return;
        }
        Mat dst = dobj(src);
        ImageViewer imageViewer = new ImageViewer(dst, "识脸");
        imageViewer.imshow();
    }
 
    private static Mat dobj(Mat src) {
        Mat dst = src.clone();
 
        CascadeClassifier objDetector = new CascadeClassifier(
                "D:\\opencvinstall\\build\\install\\etc\\lbpcascades\\lbpcascade_frontalface.xml");
 
        MatOfRect objDetections = new MatOfRect();
 
        objDetector.detectMultiScale(dst, objDetections);
 
        if (objDetections.toArray().length <= 0) {
            return src;
        }
 
        for (Rect rect : objDetections.toArray()) {
            Imgproc.rectangle(dst, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.width),
                    new Scalar(0, 255, 0), 1); // new Scalar(0, 255, 0), 1)绿 //new Scalar(0, 0, 255), 1)红 //new
                                                // Scalar(255, 0, 0), 1)蓝
            outputFace(faceOutPutDir, src.submat(rect));
        }
        return dst;
    }
 
    private static void outputFace(String outputDir, Mat face) {
        long millSecs = System.currentTimeMillis();
        int temp = (int) (Math.random() * 10000);
        StringBuffer outputImgName = new StringBuffer();
        outputImgName.append(outputDir).append("/").append(millSecs).append(temp).append(".jpg");
        if (face != null) {
            Imgcodecs.imwrite(outputImgName.toString(), face);
            logger.info(">>>>>>write image into->" + outputDir);
        }
    }
}

运行DetectFace.java,我们可以在D:\opencv-demo\face目录中得到5个写出的人脸的图片。

您可能感兴趣的文章:

相关文章