当前位置:主页 > 数据库 > mongodb >

MongoDB使用场景总结

时间:2022-06-02 10:03:38 | 栏目:mongodb | 点击:

很多人比较关心 MongoDB 的适用场景,也有用户在话题里分享了自己的业务场景,比如

案例1

用在应用服务器的日志记录,查找起来比文本灵活,导出也很方便。也是给应用练手,从外围系统开始使用MongoDB。

案例2

mongodb之前有用过,主要用来存储一些监控数据,No schema 对开发人员来说,真的很方便,增加字段不用改表结构,而且学习成本极低。

案例3

使用MongoDB做了O2O快递应用,·将送快递骑手、快递商家的信息(包含位置信息)存储在 MongoDB,然后通过 MongoDB 的地理位置查询,这样很方便的实现了查找附近的商家、骑手等功能,使得快递骑手能就近接单,目前在使用MongoDB 上没遇到啥大的问题,官网的文档比较详细,很给力。

经常跟一些同学讨论 MongoDB 业务场景时,会听到类似『你这个场景 mysql 也能解决,没必要一定用 MongoDB』的声音,的确,并没有某个业务场景必须要使用 MongoDB才能解决,但使用 MongoDB 通常能让你以更低的成本解决问题(包括学习、开发、运维等成本),下面是 MongoDB 的主要特性,大家可以对照自己的业务需求看看,匹配的越多,用 MongoDB 就越合适。

MongoDB 特性 优势
事务支持 MongoDB 目前只支持单文档事务,需要复杂事务支持的场景暂时不适合
灵活的文档模型 JSON 格式存储最接近真实对象模型,对开发者友好,方便快速开发迭代
高可用复制集 满足数据高可靠、服务高可用的需求,运维简单,故障自动切换
可扩展分片集群 海量数据存储,服务能力水平扩展
高性能 mmapv1、wiredtiger、mongorocks(rocksdb)、in-memory 等多引擎支持满足各种场景需求
强大的索引支持 地理位置索引可用于构建 各种 O2O 应用、文本索引解决搜索的需求、TTL索引解决历史数据自动过期的需求
Gridfs 解决文件存储的需求
aggregation & mapreduce 解决数据分析场景需求,用户可以自己写查询语句或脚本,将请求都分发到 MongoDB 上完成

从目前阿里云 MongoDB 云数据库上的用户看,MongoDB 的应用已经渗透到各个领域,比如游戏、物流、电商、内容管理、社交、物联网、视频直播等,以下是几个实际的应用案例。

如果你还在为是否应该使用 MongoDB,不如来做几个选择题来辅助决策(注:以下内容改编自 MongoDB 公司 TJ 同学的某次公开技术分享)。

应用特征 Yes / No
应用不需要事务及复杂 join 支持 必须 Yes
新应用,需求会变,数据模型无法确定,想快速迭代开发
应用需要2000-3000以上的读写QPS(更高也可以)
应用需要TB甚至 PB 级别数据存储 ?
应用发展迅速,需要能快速水平扩展 ?
应用要求存储的数据不丢失 ?
应用需要99.999%高可用 ?
应用需要大量的地理位置查询、文本查询

如果上述有1个 Yes,可以考虑 MongoDB,2个及以上的 Yes,选择MongoDB绝不会后悔。

您可能感兴趣的文章:

相关文章