当前位置:主页 > 软件编程 > C代码 >

C++实现LeetCode(62.不同的路径)

时间:2021-09-14 15:04:37 | 栏目:C代码 | 点击:

[LeetCode] 62. Unique Paths 不同的路径

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

这道题让求所有不同的路径的个数,一开始还真把博主难住了,因为之前好像没有遇到过这类的问题,所以感觉好像有种无从下手的感觉。在网上找攻略之后才恍然大悟,原来这跟之前那道 Climbing Stairs 很类似,那道题是说可以每次能爬一格或两格,问到达顶部的所有不同爬法的个数。而这道题是每次可以向下走或者向右走,求到达最右下角的所有不同走法的个数。那么跟爬梯子问题一样,需要用动态规划 Dynamic Programming 来解,可以维护一个二维数组 dp,其中 dp[i][j] 表示到当前位置不同的走法的个数,然后可以得到状态转移方程为:  dp[i][j] = dp[i - 1][j] + dp[i][j - 1],这里为了节省空间,使用一维数组 dp,一行一行的刷新也可以,代码如下:

解法一:

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<int> dp(n, 1);
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                dp[j] += dp[j - 1]; 
            }
        }
        return dp[n - 1];
    }
};

这道题其实还有另一种很数学的解法,实际相当于机器人总共走了 m + n - 2步,其中 m - 1 步向右走,n - 1 步向下走,那么总共不同的方法个数就相当于在步数里面 m - 1 和 n - 1 中较小的那个数的取法,实际上是一道组合数的问题,写出代码如下:

解法二:

class Solution {
public:
    int uniquePaths(int m, int n) {
        double num = 1, denom = 1;
        int small = m > n ? n : m;
        for (int i = 1; i <= small - 1; ++i) {
            num *= m + n - 1 - i;
            denom *= i;
        }
        return (int)(num / denom);
    }
};

您可能感兴趣的文章:

相关文章