当前位置:主页 > 软件编程 > JAVA代码 >

SpringBoot异步调用方法实现场景代码实例

时间:2020-10-30 16:17:30 | 栏目:JAVA代码 | 点击:

一、背景  

项目中肯定会遇到异步调用其他方法的场景,比如有个计算过程,需要计算很多个指标的值,但是每个指标计算的效率快慢不同,如果采用同步执行的方式,运行这一个过程的时间是计算所有指标的时间之和。比如:

  方法A:计算指标x,指标y,指标z的值,其中计算指标x需要1s,计算指标y需要2s,指标z需要3s。最终执行完方法A就是5s。

  现在用异步的方式优化一下

  方法A异步调用方法B,方法C,方法D,方法B,方法C,方法D分别计算指标x,指标y,指标z的值,那么最终执行完方法A的时间则是3s。

还有一种用途是当一个业务里面需要多个请求时,这时候异步并发请求所得到的回报远远是物有所值的。因为他是异步执行的,话不多说,一下是在springBoot里面使用并发请求;

二、spring boot中异步并发使用

2.1、appllication.yml

#****************集成Async线程池开始*******************
async: # Async线程池 配置
 executor:
  corepoolsize: 20
  maxpoolsize: 25
  queuecapacity: 40
  keepaliveseconds: 200
  threadnameprefix: appasync
  awaitterminationseconds: 60
#*****************集成Async线程池结束******************

2.2、配置线程池

@Configuration
@EnableAsync
public class ExecutorConfig {

  @Value("${async.executor.corepoolsize}")
  private Integer corePoolSize;

  @Value("${async.executor.maxpoolsize}")
  private Integer maxPoolSize;

  @Value("${async.executor.queuecapacity}")
  private Integer queueCapacity;

  @Value("${async.executor.keepaliveseconds}")
  private Integer keepAliveSeconds;

  @Value("${async.executor.threadnameprefix}")
  private String threadNamePrefix;

  @Value("${async.executor.awaitterminationseconds}")
  private Integer awaitTerminationSeconds;

  /**
   * 线程池
   *
   * @return
   */
  @Bean(name = "asyncExecutor")
  public Executor asyncExecutor() {
    ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
    // 基础线程数 corePoolSize: 10
    executor.setCorePoolSize(corePoolSize);
    // 最大线程数 maxPoolSize: 15
    executor.setMaxPoolSize(maxPoolSize);
    // 队列长度 queueCapacity: 25
    executor.setQueueCapacity(queueCapacity);
    // 线程池维护线程所允许的空闲时间,单位为秒 keepAliveSeconds: 200
    executor.setKeepAliveSeconds(keepAliveSeconds);
    // 线程名字 threadNamePrefix: appasync
    executor.setThreadNamePrefix(threadNamePrefix);
    executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
    // 等待所有任务都完成再继续销毁其他的Bean
    executor.setWaitForTasksToCompleteOnShutdown(true);
    // 线程池中任务的等待时间,如果超过这个时候还没有销毁就强制销毁,以确保应用最后能够被关闭,而不是阻塞住
    executor.setAwaitTerminationSeconds(awaitTerminationSeconds);
    executor.initialize();
    return executor;
  }
}

2.3、线程池监控(这个可有可无,主要是为了对线程池参数及时的调优)

@RestController
@Slf4j
@RequestMapping("/pubapi/asyncExecutor")
public class AsyncExecutorController extends BaseController {

  @Resource(name = "asyncExecutor")
  private Executor asyncExecutor;

  @PostMapping("/monitor")public ResultBean<Map<String, Object>> getAsyncExecutorData() {
    ResultBean<Map<String, Object>> resultBean = ResultBeanUtil.error500();
    if (asyncExecutor == null) {
      return resultBean;
    }

    try {
      ThreadPoolTaskExecutor executorTask = (ThreadPoolTaskExecutor) asyncExecutor;
      ThreadPoolExecutor executor = executorTask.getThreadPoolExecutor();

      // 当前排队线程数
      int queueSize = executor.getQueue().size();
      // 当前活动线程数
      int activeCount = executor.getActiveCount();
      // 执行完线程数
      long completedThreadCount = executor.getCompletedTaskCount();
      // 总线程数
      long taskCount = executor.getTaskCount();
      // 初始线程数
      int poolSize = executor.getPoolSize();
      // 核心线程数
      int corePoolSize = executor.getCorePoolSize();
      // 线程池是否终止
      boolean isTerminated = executor.isTerminated();
      // 线城池是否关闭
      boolean isShutdown = executor.isShutdown();
      // 线程空闲时间
      long keepAliveTime = executor.getKeepAliveTime(TimeUnit.MILLISECONDS);
      // 最大允许线程数
      long maximumPoolSize = executor.getMaximumPoolSize();
      // 线程池中存在的最大线程数
      long largestPoolSize = executor.getLargestPoolSize();

      Map<String, Object> threadPoolData = new HashMap<>(18);
      threadPoolData.put("当前排队线程数", queueSize);
      threadPoolData.put("当前活动线程数", activeCount);
      threadPoolData.put("执行完线程数", completedThreadCount);
      threadPoolData.put("总线程数", taskCount);
      threadPoolData.put("初始线程数", poolSize);
      threadPoolData.put("核心线程数", corePoolSize);
      threadPoolData.put("线程池是否终止", isTerminated);
      threadPoolData.put("线城池是否关闭", isShutdown);
      threadPoolData.put("线程空闲时间", keepAliveTime);
      threadPoolData.put("最大允许线程数", maximumPoolSize);
      threadPoolData.put("线程池中存在的最大线程数", largestPoolSize);

      InetAddress inetAddress = IdWorker.getLocalHostLANAddress();
      Map<String, Object> resultData = new HashMap<>(4);
      resultData.put("ip", inetAddress.getHostAddress());
      resultData.put("threadPoolData", threadPoolData);

      resultBean = ResultBeanUtil.success("请求成功!", resultData);
    } catch (Exception e) {
      e.printStackTrace();
    }
    return resultBean;
  }

}

2.4、代码中使用

public void getMap(){
    /**
     * 先将耗时的、相互之间无依赖的操作先执行,由于其执行结果暂时不是特别关注,所以
     */
    Future<String> futureA = functionA();
    Future<String> futureB = functionB();
    /**
     * 执行其他的操作,其实functionA(),functionB()也在工作
     */
    aaa();
    /**
     * 获取异步的结果,然后计算
     */
    try {
      String resultA =futureA.get();
      String resuleB = futureB.get();
    } catch (InterruptedException e) {
      e.printStackTrace();
    } catch (ExecutionException e) {
      e.printStackTrace();
    }
    
  }

  public Future<String> functionA (){
    Future<String> future = null;
    try {
      Thread.sleep(5000);
      future = new AsyncResult<String>("functionA");
    } catch (InterruptedException e) {
      e.printStackTrace();
    }
    return future;
  }

  public Future<String> functionB (){
    Future<String> future = null;
    try {
      Thread.sleep(3000);
      future = new AsyncResult<String>("functionB");
    } catch (InterruptedException e) {
      e.printStackTrace();
    }
    return future;
  }

  public void aaa(){
    System.out.println("我是");
  }

您可能感兴趣的文章:

相关文章